Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 15, 2014

Microwave plasma assisted pyrolysis of refuse derived fuels

  • Parin Khongkrapan EMAIL logo , Patipat Thanompongchart , Nakorn Tippayawong and Tanongkiat Kiatsiriroat
From the journal Open Engineering

Abstract

This work combined plasma reactivity and pyrolysis for conversion of solid wastes. Decomposition of refuse derived fuel (RDF) and its combustible components (paper, biomass, and plastic) in an 800 W microwave plasma reactor was investigated at varying argon flow rates of 0.50 to 1.25 lpm for 3 minutes. The characteristic bright light emission of plasma was observed with calculated maximum power density of about 35 W/cm3. The RDF and its components were successfully converted into char and combustible gas. The average char yield was found to be 12–21% of the original mass, with a gross calorific value of around 39 MJ/kg. The yield of the product gas was in the range 1.0–1.7 m3/kg. The combustible gas generated from the pyrolysis of the RDF contained about 14% H2, 66% CO, and 4% CH4 of the detected gas mass, with a heating value of 11 MJ/m3. These products are potentially marketable forms of clean energy.

[1] Chandrappa R., Das D.B., Solid Waste Management, 2012, Springer, Chapter 2, Waste quantities and characteristics, 47–63, DOI: 10.1007/978-3-642-28681-0_2 10.1007/978-3-642-28681-0_2Search in Google Scholar

[2] Tippayawong N., Kinorn J., Refuse derived fuel as potential renewable energy source via pyrolysis, International Journal of Renewable Energy, 2007, 2, 45–51 Search in Google Scholar

[3] Blanco P.H., Wu C., Onwudili J.A., Williams P.T., Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel, Applied Catalysis B Environment, 2013, 134–135, 238–250 http://dx.doi.org/10.1016/j.apcatb.2013.01.01610.1016/j.apcatb.2013.01.016Search in Google Scholar

[4] Nema S.K., Ganeshprasad K.S., Plasma pyrolysis of medical waste, Current Science, 2002, 83, 271–278 Search in Google Scholar

[5] Yoon S.J., Lee J.G., Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch, International Journal of Hydrogen Energy, 2012, 37, 17093–17100 http://dx.doi.org/10.1016/j.ijhydene.2012.08.05410.1016/j.ijhydene.2012.08.054Search in Google Scholar

[6] Tang L., Huang H., Plasma pyrolysis of biomass for production of syngas and carbon adsorbent, Energy & Fuels, 2005, 19, 1174–1178 http://dx.doi.org/10.1021/ef049835b10.1021/ef049835bSearch in Google Scholar

[7] Lin K.S., Wang H.P., Liu S.H., Chang N.B., Huang Y.J., Wang H.C., Pyrolysis kinetics of refuse-derived fuel, Fuel Processing Technology, 1999, 60, 103–110 http://dx.doi.org/10.1016/S0378-3820(99)00043-010.1016/S0378-3820(99)00043-0Search in Google Scholar

[8] Li L., Zhang H., Zhuang X., Pyrolysis of waste paper: characterization and composition of pyrolysis oil, Energy Sources, 2005, 27, 867–873 http://dx.doi.org/10.1080/0090831049045087210.1080/00908310490450872Search in Google Scholar

[9] Seo M.W., Kim S.D., Lee S.H., Lee J.G., Pyrolysis characteristics of coal and RDF blends in nonisothermal and isothermal conditions, Journal of Analytical & Applied Pyrolysis, 2010, 88, 160–167 http://dx.doi.org/10.1016/j.jaap.2010.03.01010.1016/j.jaap.2010.03.010Search in Google Scholar

[10] Blanco P.H., Wu C., Onwudili J.A., Williams P.T., Characterization of tar from the pyrolysis/gasification of refuse derived fuel: influence of process parameters and catalysis, Energy & Fuels, 2012, 26, 2107–2115 http://dx.doi.org/10.1021/ef300031j10.1021/ef300031jSearch in Google Scholar

[11] Singh S., Wu C., Williams P.T., Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques, Journal of Analytical & Applied Pyrolysis, 2012, 94, 99–107 http://dx.doi.org/10.1016/j.jaap.2011.11.01110.1016/j.jaap.2011.11.011Search in Google Scholar

[12] Mastellone, M.L., Perugini F., Ponte M., Arena U., Fluidized bed pyrolysis of a recycled polyethylene, Polymer Degradation & Stability, 2002, 76, 479–487 http://dx.doi.org/10.1016/S0141-3910(02)00052-610.1016/S0141-3910(02)00052-6Search in Google Scholar

[13] Janajreh I., Raza S.S., Valmundsson A.S., Plasma gasification process: modeling, simulation and comparison with conventional air gasification, Energy Conversion & Management, 2013, 65, 801–809 http://dx.doi.org/10.1016/j.enconman.2012.03.01010.1016/j.enconman.2012.03.010Search in Google Scholar

[14] Lupa C.J., Wylie S.R., Shaw A., Al-Shamma A., Sweetman A.J., Herbert B.M.J., Gas evolution and syngas heating value from advanced thermal treatment of waste using microwave-induced plasma, Renewable Energy, 2013, 50, 1065–1072 http://dx.doi.org/10.1016/j.renene.2012.09.00610.1016/j.renene.2012.09.006Search in Google Scholar

[15] Huang H., Tang L., Treatment of organic waste using thermal plasma pyrolysis technology, Energy Conversion & Management, 2007, 48, 1331–1337 http://dx.doi.org/10.1016/j.enconman.2006.08.01310.1016/j.enconman.2006.08.013Search in Google Scholar

[16] Chang J.S., Gu B.W., Looy P.C., Chu F.Y., Simpson C.J., Thermal plasma pyrolysis of used old tires for production of syngas, Journal of Environmental Science & Health, 1996, 31, 1781–1799 10.1080/10934529609376456Search in Google Scholar

[17] Tang L., Huang H., An investigation of sulfur distribution during thermal plasma pyrolysis of used tires, Journal of Analytical & Applied Pyrolysis, 2004, 72, 35–40 http://dx.doi.org/10.1016/j.jaap.2004.02.00110.1016/j.jaap.2004.02.001Search in Google Scholar

[18] Kowalska E., Opalinska T., Radomska J., Ulejczyk B., Non-thermal plasma for oxidation of gaseous products originating from thermal treatment of wastes, Vacuum, 2008, 82, 1069–1074 http://dx.doi.org/10.1016/j.vacuum.2008.01.01610.1016/j.vacuum.2008.01.016Search in Google Scholar

[19] Khongkrapan P., Tippayawong N., Kiatsiriroat T., Thermochemical conversion of waste papers to fuel gas in a microwave plasma reactor, Journal of Clean Energy Technologies, 2013, 1, 80–83 http://dx.doi.org/10.7763/JOCET.2013.V1.1910.7763/JOCET.2013.V1.19Search in Google Scholar

[20] Sekiguchi H., Orimo T., Gasification of polyethylene using steam plasma generated by microwave discharge, Thin Solid Films, 2004, 457, 44–47 http://dx.doi.org/10.1016/j.tsf.2003.12.03510.1016/j.tsf.2003.12.035Search in Google Scholar

[21] Gomez E., Amutha Rani D., Cheeseman C.R., Deegan D., Wise M., Boccaccini A.R., Thermal plasma technology for the treatment of wastes a critical review, Journal of Hazardous Materials, 2009, 161, 614–626 http://dx.doi.org/10.1016/j.jhazmat.2008.04.01710.1016/j.jhazmat.2008.04.017Search in Google Scholar PubMed

[22] Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas a review, Spectrochimica Acta Part B, 2005, 61, 2–30 http://dx.doi.org/10.1016/j.sab.2005.10.00310.1016/j.sab.2005.10.003Search in Google Scholar

[23] Chaichumporn C., Ngamsirijit P., Boonklin N., Eaiprasetsak K., Fuangfoong M., Design and construction of 2.45 GHz microwave plasma source at atmospheric pressure, Procedia Engineering, 2011, 8, 94–100 http://dx.doi.org/10.1016/j.proeng.2011.03.01810.1016/j.proeng.2011.03.018Search in Google Scholar

[24] Uhm H.S., Hong Y.C., Shin D.H., A microwave plasma torch and its applications, Plasma Sources Science & Technology, 2006, 15, 26–34 http://dx.doi.org/10.1088/0963-0252/15/2/S0410.1088/0963-0252/15/2/S04Search in Google Scholar

[25] Hu Z., Ma X., Chen C., A study on experimental characteristic of microwave-assisted pyrolysis of microalgae, Bioresource Technology, 2012, 107, 487–493 http://dx.doi.org/10.1016/j.biortech.2011.12.09510.1016/j.biortech.2011.12.095Search in Google Scholar

[26] Lupa C.J., Wylie S.R., Shaw A., Al-Shamma A., Sweetman A.J., Herbert B.M.J., Experimental analysis of biomass pyrolysis using microwave-induced plasma, Fuel Processing Technology, 2012, 97, 79–84 http://dx.doi.org/10.1016/j.fuproc.2012.01.01510.1016/j.fuproc.2012.01.015Search in Google Scholar

[27] Wang M.J., Huang Y.F., Chiueh P.T., Kuan W.H., Lo S.L., Microwave-induced torrefaction of rice husk and sugarcane residues, Energy, 2012, 37, 177–184 http://dx.doi.org/10.1016/j.energy.2011.11.05310.1016/j.energy.2011.11.053Search in Google Scholar

[28] Kanilo P.M., Kazantsev V.I., Rasyuk N.I., Schunemann K., Vavriv D.M., Microwave plasma combustion of coal, Fuel, 2003, 82, 187–193 http://dx.doi.org/10.1016/S0016-2361(02)00201-610.1016/S0016-2361(02)00201-6Search in Google Scholar

[29] Karches M., Rudolf von Rohr P., Microwave plasma characteristics of a circulating fluidized bed-plasma reactor for coating of powders, Surface & Coatings Technology, 2001, 142–144, 28–33 http://dx.doi.org/10.1016/S0257-8972(01)01145-810.1016/S0257-8972(01)01145-8Search in Google Scholar

[30] Moreno J.M.V., Ferre A.J.C., Alonso J.P., Marti B.V., A review of the mathematical models for predicting the heating value of biomass materials, Renewable & Sustainable Energy Reviews, 2012, 16, 3065–3083 http://dx.doi.org/10.1016/j.rser.2012.02.05410.1016/j.rser.2012.02.054Search in Google Scholar

[31] Shie J.L., Tsou F.J., Lin K.L., Chang Ch.Y., Bioenergy and products from thermal pyrolysis of rice straw using plasma torch, Bioresource Technology, 2010, 101, 761–768 http://dx.doi.org/10.1016/j.biortech.2009.08.07210.1016/j.biortech.2009.08.072Search in Google Scholar PubMed

Published Online: 2014-3-15
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13531-013-0142-5/html
Scroll to top button