Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Engineering

formerly Central European Journal of Engineering

Editor-in-Chief: Ritter, William

1 Issue per year

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.211
Source Normalized Impact per Paper (SNIP) 2017: 0.787

Open Access
See all formats and pricing
More options …

An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

M. Ajay Kumar / N.V. Srikanth
Published Online: 2014-11-13 | DOI: https://doi.org/10.1515/eng-2015-0005


The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

Keywords : Offshore wind; VSC HVDC; ANFIS; Coordinated controller; MTDC; MATLAB


  • [1] Ajay Kumar M., Archana K. U., Srikanth N. V., HVDC Light Systems: An overview, Int. Rev. Model. Simul., 2012, 5, 1951-1959. Google Scholar

  • [2] Lu W., Ooi B. T., Premium quality power park based on multiterminal HVDC, IEEE T. Power Deliver., 2005, 20, 978–983. CrossrefGoogle Scholar

  • [3] Vrionis T. D., Koutiva X. I., Giannakopoulos G. B., Control of an HVDC link connecting a wind farm to the grid for fault ride-through enhancements, IEEE T. Power Syst., 2007, 22, 2039–2047. CrossrefGoogle Scholar

  • [4] Tang L., Ooi B.T., Protection of VSC-multi-terminal HVDC against DC faults, In: Proceedings of IEEE Annual Power Electronics Specialists Conference (23-27 June 2002, Cairns, Queensland, Australia), IEEE, 2002, 719–724. Google Scholar

  • [5] Hairong C., Chao W., Fan Z., Wulue P., Control strategy research of VSC based multiterminal HVDC system, In: Proceedings of IEEE PES Power Systems Conference and Exposition (29 October – 1 November 2006, Atlanata, Georgia, USA), IEEE, 2006, 1986-1990. Google Scholar

  • [6] Cole S., Beerten J., Belmans R., Generalized dynamic VSCMTDC model for power system stability studies, IEEE T. Power Syst., 2010, 25, 2010, 1655-1662. Web of ScienceCrossrefGoogle Scholar

  • [7] Ajay Kumar M., Srikanth N. V., Fast Fault Recovery of a Grid Integrated Wind Farm Based HVDC Light Transmission System with ANFIS controller, Russ. Electr. Eng., 2014, 85, (In press ). Google Scholar

  • [8] Xu L., Fan L., Miao Z., Modeling and Simulation ofMulti-Terminal HVDC for Wind Power Delivery, In: Proceedings of IEEE Power Electronics andMachines inWind Applications (16-18 July 2012, Denver, Colorado, USA), IEEE, 2012, 1-6. Google Scholar

  • [9] Lie X., Liangzhong Y., Bazargan M., DC grid management of a multi-terminal HVDCtransmission system for large offshore wind farms, In: Proceedings of the 1st International Conference on Sustainable Power Generation and Supply 6-7 April 2009, Nanjing, China), Power Network Technology Press, 2009, 1-7. Google Scholar

  • [10] Kirby N. M., Xu L., Luckett M., SiepmannW., HVDC transmission for large offshore wind farms, IEEE T. Power Eng. J., 2002, 16, 135–141. CrossrefGoogle Scholar

  • [11] Zhu J., Booth C. D., Adam G. P., Roscoe A. J., Bright C. G., Inertia emulation control strategy for VSC-HVDC transmission systems, IEEE T. Power Syst., 2013, 28, 1277-1287. CrossrefWeb of ScienceGoogle Scholar

  • [12] Dierckxsens C., Srivastava K., Reza M., Cole S., Beerten J., Belmans R., A distributed DC voltage control method for VSC MTDC systems, Electric Power Syst. Res., 2012, 82, 54– 58. CrossrefGoogle Scholar

  • [13] Yin S., Yang X, Karimi H. R., Data-driven adaptive observer for fault diagnosis, Math. Prob. Eng., 2012, 2012, 194-199. Google Scholar

  • [14] Ajay Kumar M., Srikanth N. V., Modelling and simulation of SVPWM based vector controlled HVDC Light systems, Leonardo Electronic Journal of Practices and Technologies, 2012, 11, 23- 36. Google Scholar

  • [15] Ajay Kumar M., Srikanth N. V., An adaptive neuro fuzzy inference system controlled space vector pulse width modulation based HVDC Light transmission system under AC fault conditions, Cent. Eur. J. Eng., 2014, 4, 27-38. Google Scholar

  • [16] Wang L., Truong D.-N., Stability enhancement of a power system with a PMSG-based and a DFIG-based offshore wind farm using a SVC with an adaptive-network-based fuzzy inference system, IEEE T. Ind. Electron., 2013, 60, 2799–2807.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-07-05

Accepted: 2014-10-13

Published Online: 2014-11-13

Citation Information: Open Engineering, Volume 5, Issue 1, ISSN (Online) 2391-5439, DOI: https://doi.org/10.1515/eng-2015-0005.

Export Citation

© 2015 M. Ajay Kumar and N.V. Srikanth. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in