[1]

Bäumel A., Seeger T., Materials data for cyclic loading: Supplement 1, no. 61 in Materials Science Monographs, Elsevier Science Publishers, Amsterdam, Netherlands, 1990 Google Scholar

[2]

Manson S.S., Fatigue: A complex subject - Some simple approximations, Exp. Mech., 1965, 5(4), 193-226 CrossrefGoogle Scholar

[3]

Muralidharan U., Manson S.S., A Modified Universal Slopes equation for estimation of fatigue characteristics of metals, J. Eng. Mater. Tech. - T. ASME, 1988,110(1), 55-58 CrossrefGoogle Scholar

[4]

Boller C., Seeger T., Materials Data for Cyclic Loading: Volumes 1-5, no. 42a-42e in Materials Science Monographs, Elsevier Science Publishers, Amsterdam, Netherlands, 1987 Google Scholar

[5]

Korkmaz S., Uniform Material Law: Extension to high-strength steels. A methodology to predict fatigue life of high-strength steels, VDM Verlag, Saarbrücken, Germany, 2010 Google Scholar

[6]

Kim K.S., Chen X., Han C., Lee H.W., Estimation methods for fatigue properties of steels under axial and torsional loading, Int. J. Fatigue, 2002, 24(7), 783-793 Google Scholar

[7]

Roessle M.L., Fatemi A., Strain-controlled fatigue properties of steels and some simple approximations, Int. J. Fatigue, 2000, 22(6), 495-511 Google Scholar

[8]

Casagrande A., Cammarota G.P., Micele L., Relationship between fatigue limit and vickers hardness in steels, Mater. Sci. Eng. A, 2011, 528(9), 3468-3473 CrossrefGoogle Scholar

[9]

Bandara C.S., Siriwardane S.C., Dissanayake U.I., Dissanayake R., Fatigue strength prediction formulae for steels and alloys in the gigacycle regime, Int. J. Mat. Mech. Man., 2013,1(3), 256- 260 Google Scholar

[10]

Li J., Sun Q., Zhang Z.-P., Li C.-W., Qiao Y.-J., Theoretical estimation to the cyclic yield strength and fatigue limit for alloy steels, Mech. Res. Commun., 2009, 36(3), 316-321 CrossrefWeb of ScienceGoogle Scholar

[11]

Tomasella A., el Dsokia C., Hanselka H., Kaufmann H., A computational estimation of cyclic material properties using Artificial Neural Networks, Procedia Engineer., 2011,10, 439-445 CrossrefGoogle Scholar

[12]

Pang J.C., Li S.X., Wang Z.G., Zhang Z.F., Relations between fatigue strength and other mechanical properties of metallic materials, Fatigue Fract. Eng. Mater. Struct., 2014, 37(9), 958-976 CrossrefWeb of ScienceGoogle Scholar

[13]

Bathias C., Fatigue limit in metals, Wiley-ISTE, London, UK, 2014 Google Scholar

[14]

Kimura K., Creep rupture strength evaluation with region splitting by half yield, in: Proc. ASME 2013 PVP Conf., no. 97819 in PVP2013, ASME, Paris, France, 2013, 1-8 Google Scholar

[15]

Gorash Y., Development of a creep-damage model for nonisothermal long-term strength analysis of high-temperature components operating in a wide stress range, PhD thesis, Center of Engineering Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany, 2008 Google Scholar

[16]

Altenbach H., Gorash Y., Naumenko K., Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges, Acta Mechanica, 2008,195(1-4), 263-274CrossrefWeb of ScienceGoogle Scholar

[17]

Gorash Y., Development of a creep-damage model for a wide stress range, SVH-Verlag, Saarbrücken, Germany, 2015 Google Scholar

[18]

Dowling N.E., Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed., Pearson Education Limited, Harlow, UK, 2013 Google Scholar

[19]

Chaboche J.-L., Dang Van K., Cordier G., Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, in: Trans. 5th Int. Conf. on Structural Mechanics in Reactor Technology, no. L11/3 in SMiRT5,1-10, IASMiRT, Berlin, Germany, 1979 Google Scholar

[20]

Chaboche J.-L., A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plasticity, 2008, 24(10), 1642-1693 Web of ScienceCrossrefGoogle Scholar

[21]

Higashida Y., Lawrence F.V., Strain controlled fatigue behavior of weld metal and heat-affected base metal in A36 and A514 steel welds, FCP Report No. 22, University of Illinois, Urbana, Illinois, USA, 1976 Google Scholar

[22]

Smith R.W., Hirschberg M.H., Manson S.S., Fatigue behavior of materials under strain cycling in low and intermediate life range, Technical Note No. D-1574, NASA, Cleveland, Ohio, USA, 1963 Google Scholar

[23]

NRIM Fatigue Data Sheet No. 78, Data sheets on elevated- temperature, time-dependent low-cycle fatigue properties of ASTM A387 Grade 91 (9Cr-1Mo) steel plate for pressure vessels, Tech. rep., National Research Institute for Metals, Tokyo, Japan, 1993 Google Scholar

[24]

Ramberg W., Osgood W.R., Description of stress-strain curves by three parameters, Technical Note No. 902, NASA, Washington DC, USA, 1943 Google Scholar

[25]

Armstrong P.J., Frederick C.O., A mathematical representation of the multiaxial Bauschinger effect, Report no. RD/B/N731, CEGB, Berkeley, UK, 1966 Google Scholar

[26]

Microsoft® Office Professional Plus, Excel Help System // Analyzing data // What-if analysis // Define and solve a problem by using Solver, Microsoft Corp., Release 2010 ed., 2009 Google Scholar

[27]

Hyde T., Sun W., Hyde C., Applied Creep Mechanics, McGraw-Hill Education, New York, USA, 2004 Google Scholar

[28]

ASTM Standard, Standard Specification for Carbon Structural Steel, no. A36/A36M - 08 in ASTM, ASTM International, West Conshohocken, USA, 2008 Google Scholar

[29]

Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1994 Google Scholar

[30]

Kimura K., Kushima H., Sawada K., Long-term creep deformation property of modified 9Cr-1Mo steel, Mater. Sci. Eng. A, 2009, 510-511, 58-63 Google Scholar

[31]

Wang X.G., Crupi V., Guo X.L., Zhao Y.G., Quantitative thermographic methodology for fatigue assessment and stress measurement, Int. J. of Fatigue, 2010, 32(12), 1970-1976 CrossrefWeb of ScienceGoogle Scholar

[32]

Boyer H.E., Atlas of Fatigue Curves, ASM International, Materials Park, Ohio, USA, 1986 Google Scholar

[33]

Dowling N.E., Mean stress effects in Stress-Life and Strain-Life fatigue, SAE Technical Paper, 2004, 2004-01-2227, 1-14 Google Scholar

[34]

Ragab A., Alawi H., Sorein K., Corrosion fatigue of steel in various aqueous environments, Fatigue Fract. Eng. Mater. Struct., 1989, 12(6), 469-479 CrossrefGoogle Scholar

[35]

Matsumori Y., Nemoto J., Ichikawa Y., Nonaka I., Miura H., High cycle fatigue properties of modified 9Cr-1Mo steel at elevated temperatures, in: Proc. ASME 2012 Int. Mechanical Engineering Congress & Exposition, no. 87329 in IMECE2012, ASME, Houston, Texas, USA, 2012, 85-89 Google Scholar

[36]

Basquin O., The exponential law of endurance tests, Proc. ASTM, 1910,10(II), 625-630 Google Scholar

[37]

Bastenaire F., New method for the statistical evaluation of constant stress amplitude fatigue-test results, in: R.A. Heller (Ed.), Probabilistic Aspects of Fatigue, no. STP 511 in ASTM special technical publication, chapter 1, 3-28, ASTM, Philadelphia, USA, 1972 Google Scholar

[38]

Newbold P., ANSYS® nCode DesignLife Theory Guide, HBM nCode, Catcliffe, Rotherham, UK, Release 15.0 ed., 2013 Google Scholar

[39]

Newbold P., ANSYS® nCode DesignLife Worked Examples, HBM nCode, Catcliffe, Rotherham, UK, Release 15.0 ed., 2013 Google Scholar

[40]

Castillo E., Fernández-Canteli A., A unified statistical methodology for modeling fatigue damage, Springer, Berlin, Germany, 2009 Google Scholar

[41]

Kloc L., Sklenička V., Transition from power-law to viscous creep behaviour of P-91 type heat-resistant steel, Mater. Sci. Eng. A, 1997, A234-A236, 962 - 965 Google Scholar

[42]

Sklenička V., Kuchařová K., DlouhýA., Krejčí J., Creep behaviour and microstructure of a 9cr steel, in: D. Coutsouradis et al. (Ed.), Proc. Conf. Materials for Advanced Power Engineering 1994: Part I, Kluwer Academic Publishers, Liege, Belgium, 1994, 435-444 Google Scholar

[43]

Gorash Y., Altenbach H., Lvov G., Modelling of high-temperature inelastic behaviour of the austenitic steel aisi type 316 using a continuum damage mechanics approach, J. of Strain Analysis for Eng. Design, 2012, 47(4), 229-243 Web of ScienceCrossrefGoogle Scholar

[44]

Dimmler G., Weinert P., Cerjak H., Extrapolation of short-term creep rupture data - The potential risk of over-estimation, Int. J. Pres. Ves. Pip., 2008, 85, 55-62 Web of ScienceCrossrefGoogle Scholar

[45]

Terent’ev V.F., Endurance limit of metals and alloys, Met. Sci. Heat Treat., 2008, 50(1-2), 88-96 Web of ScienceCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.