[1]

Suarez A, López de Lacalle, L.N., Polvorosa, R., Veiga F., Wretland, A., Effects of high-pressure cooling on the wear patterns Wear-dependent specific coefficients in a mechanistic model on turning inserts used on alloy IN718, Mat. Manuf. Proc., 2016, 32, 6. Google Scholar

[2]

Suárez A., Veiga F., López de Lacalle L.N., Polvorosa R., Lutze S., Wretland A., Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718, J. Mat. Eng. Perf. Google Scholar

[3]

Narutaki N., Yamane Y., Hayashi K., Kitagawa T., High speed machining of Inconel 718 with ceramic tools, Annals of CIRP, 1993, 42, 103-106. CrossrefGoogle Scholar

[4]

Dudzinski D., Devillez A., Moufki A., Larrouqučre D., Zerrouki V., Vigneau J., A review of developments towards dry and high speedmachining of Inconel 718 alloy, Int. J.Mach. ToolsManuf., 2004, 44, 439-456. CrossrefGoogle Scholar

[5]

Fang N., Wu Q., A comparative study of the cutting forces in high speedmachining of Ti-6Al-4V and Inconel 718 with a round cutting edge tool, J. Mat. Proc. Tech., 2009, 209, 4386-4389. Google Scholar

[6]

Thakur D.G., Ramamoorthy B., Vijayaraghavan L., Study on the machinability characteristics of superalloy Inconel 718 during high speed turning, Mat. Des., 2009, 30, 1718-1725. CrossrefGoogle Scholar

[7]

Kothamasu R., Huang S.H., Verduin, W.H., Comparison of computational intelligence and statistical methods in condition monitoring for hard turning, Int. J. Prod. Res., 2005, 43(3), 597-610. CrossrefGoogle Scholar

[8]

Kountanya R., Surface finish and tool wear characterization in hard turning using a mathematical cutting tool representation, Mach. Sci. Tech., 2011, 15(4), 429-452. CrossrefGoogle Scholar

[9]

Bartary G., Choudhury S.K., State of the art in hard turning, Int. J. Mach. Tools Manuf., 2012, 53(1), 1-14.CrossrefWeb of ScienceGoogle Scholar

[10]

Saini S., Ahuja I.S., Sharma V.S., Residual Stresses, surface roughness, and tool wear in hard turning: A comprehensive review, Mat. Manuf. Proc., 2012, 27(6), 583-598. CrossrefGoogle Scholar

[11]

Arunachalam R.M., Mannam M.A., Spowage A.C., Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, Int. J.Mach. Tools Manuf., 2004, 44, 879-887. CrossrefGoogle Scholar

[12]

Arunachalam R.M., Mannan M.A., Performance of CBN cutting tools in facing of age hardened Inconel 718, Trans. NAMRI/SME, XXXII, 2004. Google Scholar

[13]

Cui X., Guo J., Zheng J., Optimization of geometry parameters for ceramic cutting tools in intermittent turning of hardened steel, Mat. Des., 2016, 92(15), 424-437. Google Scholar

[14]

Xu K., Zou B., Huang C., Yao Y., Zhou H., Li Z., Machinability of Hastelloy C-276 using Hot-pressed sintered Ti(C7N3)-based cermet cutting tools, Chin. J. Mech. Eng., 2015, 28(3), 599-606. Web of ScienceCrossrefGoogle Scholar

[15]

Yan S., Zhu D., Zhuang K., Zhang X., Ding H., Modelling and analysis of coated tool temperature variation in dry milling of Inconel 718 turbine blade considering flank wear effect, J. Mat. Proc. Tech., 2014, 214(12), 2985-3001. CrossrefGoogle Scholar

[16]

Yun J.Y., Shin G.S., Kim D.I., Lee H.S., Kang W.S., Kim S.J., 2015, Effect of carbide size and spacing on the fretting wear behaviour of Inconel 690 SG tube mated with SUS 409, Wear, 2015, 338–339(15), 252-257. Google Scholar

[17]

Mi X., Wang W.X., Xiong X.M., Qian H., Tang L.C., Xie Y.C., Peng J.F., Cai Z.B., Zhu M.H., Investigation of fretting wear behaviour of Inconel 690 alloy in tube/plate contact configuration, Wear, 2015, 328–329(15), 582-590. Google Scholar

[18]

Fernández-Valdivielso A., López de Lacalle L.N., Urbikain G., Rodriguez A., Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity, Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci., 2015, 1-8. Web of ScienceGoogle Scholar

[19]

Ezugwu E.O., Bonney J., Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools, J. Mat. Process. Technol., 2004, 153–154, 1045–1050. Google Scholar

[20]

Vagnorius Z., Sřrby K., Effect of high-pressure cooling on life of SiAlON tools in machining of Inconel 718, Int. J. Adv. Manuf. Tech., 2011, 54(1), 83-92. CrossrefWeb of ScienceGoogle Scholar

[21]

Wei W., Xu J., Fu Y., Yang S., Tool wear in turning of titanium alloy after thermohydrogen treatment, Chin. J. Mech. Eng., 2012, 25(4), 776-780. CrossrefWeb of ScienceGoogle Scholar

[22]

Jomaa W., Songmene V., Bocher P., Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651. Mat., 2014, 7(3), 1603-1624. Google Scholar

[23]

López de Lacalle L.N., Sánchez J.A., Lamikiz A., Celaya A. Plasma assisted milling of heat-resistant superalloys, Trans. ASME, J. Manuf. Sci. Eng., 2004, 126, 274-285. CrossrefGoogle Scholar

[24]

Olovsjö S., Wretland A., Sjöberg G., The effect of grain size and hardness of Waspaloy on the wear of cemented carbid tools. Int. J. Adv. Manuf. Tech., 2010, 50(9), 907-915. CrossrefGoogle Scholar

[25]

Liu P., Xu J.H., Fu Y.C., Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool, J. Zhejiang University Science A, 2011, 12(1), 56-62. CrossrefWeb of ScienceGoogle Scholar

[26]

Altintas Y., Budak E., Analytical Prediction of Stability Lobes in Milling, Annals CIRP Manuf. Tech., 1995, 44, 357-362. CrossrefGoogle Scholar

[27]

Urbikain G., Artetxe E., López de Lacalle L.N., Numerical simulation of milling forces with barrel-shaped tools considering run out and tool inclination angles, Appl. Math. Mod., 2017, 47, 619–636. CrossrefGoogle Scholar

[28]

Altintas Y., Manufacturing Automation, Cambridge University Press, 2000. Google Scholar

[29]

Kobayashi S., Thomsen E.G., The role of friction in metal cutting, J.Eng. Ind.,1960, 82, 324. CrossrefGoogle Scholar

[30]

Thomsen E.G., Macdonald A.G., Kobayashi S., Flank friction studies with carbide tools reveal sublayer plastic flow, J. Eng. Ind., 1962, 84, 53. CrossrefGoogle Scholar

[31]

Zorev N.N., Metal cutting mechanics, First Edition, 1966, Oxford: Pergamon Press. pp. 526. Google Scholar

[32]

Elbestawi M.A., Ismali F., Du R.X., Ullagaddi B.C., 1991, Modelling machining dynamics including damping in the tool work piece interface, Tribol. Asp. Manuf., 1991, 54, 253-258. Google Scholar

[33]

Wu D.W., Application of a comprehensive dynamic cutting force model to orthogonal wave generating processes, Int. J. Mech. Sci., 1988, 30, 581-660. CrossrefGoogle Scholar

[34]

Challen J.M., Oxley P.L.B., An explanation of the different regimes of friction and wear using asperity deformation models, Wear, 1979, 53, 229-243. CrossrefGoogle Scholar

[35]

Waldorf D.J., DeVor R.E., Kappor S.G., A slip-line field for ploughing during orthogonal cutting, ASME. J. Manufacturing Sci. Eng., 1998, 120, 693-699. CrossrefGoogle Scholar

[36]

Park K.H., Yang G.D., Le D.Y., Tool wear analysis on coated and uncoated carbide tools in inconel machining, Int. J. Prec. Eng. Manuf., 2015, 16(7), 1639-1645. CrossrefGoogle Scholar

[37]

Altintas Y., Eynian M., Onozuka, H., Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Annals – Manuf. Tech., 2008, 57(1), 371-374. CrossrefGoogle Scholar

[38]

Chiou R.Y., Liang S.Y., Analysis of acoustic emission in chatter vibration with tool wear effect in turning, Int. J. Mach. Tools Manuf., 2000, 927-941. Google Scholar

[39]

Lim G.H., Tool-wear monitoring in machining turning, J. of Mat. Proc. Tech., 1995, 51, 25-36. CrossrefGoogle Scholar

[40]

Urbikain G., López de Lacalle L.N., Fernández-Valdivielso A., Regenerative vibration avoidance due to tool tangential dynamics in interrupted turning, J. Sound Vib., 2014, 333(17), 3996–4006. CrossrefWeb of ScienceGoogle Scholar

[41]

Urbikain G., Olvera D., López de Lacalle L.N., Elías-Zúńiga A., Stability and vibrational behaviour in turning processes with low rotational speeds, Int. J. Adv. Manuf. Tech., 2015, 80, 871–885.CrossrefWeb of ScienceGoogle Scholar

[42]

Urbikain G., López de Lacalle L.N., Training and learning of specialised engineers bymeans of a new advanced software, Comp. Appl. Eng. Edu. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.