[1]

Price, Kenneth V, Rainer M. Storn (1997). Differential Evolution - A simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization* 4, 341-359. Google Scholar

[2]

Brest, Janez, Aleš Zamuda, Borko Bošković, Sašo Greiner & Viljem Žumer (2008). An analysis of the control parameters adaptation in DE. *Advances in Differential Evolution, Springer Berlin Heiderberg* 143, 89-110. doi:10.1007/978-3-540-68830-3_3. Google Scholar

[3]

Rönkkönen, Jani (2009). *Continuous multimodal global optimization with differential evolution-based method*. Lappeenranta University of Tehnology. ISBN: 978-952-214-852-0.

[4]

Saad, Mohd Sadli, Hishamuddin Jamaluddin & Intal Zaurah Mat Darus (2012). PID controller tuning using evolutionary algorithms. *WSEAS Transactions on Systems and Control* 4, 139-149. Google Scholar

[5]

Penttinen, Aki (2005). *FPGA:lle sulautetulla mikroprosessorilla toteutettu sähkökäytön säätöjärjestelmä* Lappeenrannan teknillinen yliopisto, Sähkötekniikan osasto Teollisuuselektroniikan laitos.

[6]

Aalto University, *Analogisen säädön verkkokurssi (2011b)*. PID-säätimen kokeellinen virittäminen. [PID controller tuning with experiments] ftp://autsys.aalto.fi/pub/control.tkk.fi/Kurssit/Verkkokurssit/AS-74.2111/kehittyneet/oppitunti12/kokeellinen.html

[7]

Bharti, Om Prakash, R.K. Saket, S.K. Nagar (2018). In proc. *2018 SICE Symposium of Control Systems* Tokyo, Japan, March 9-11, 2018, 128-135. Google Scholar

[8]

Maldonado, Yazmin, Oscar Castillo, Patricia Melin (2014). A multi-objective optimization of type-2 fuzzy control speed in FP-GAs. *Applied Soft Computing* 24, 2014, 1164-1174. Google Scholar

[9]

Ramadan, E.A. M. El-bardini, M.A. Fkirin (2014), Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control, *Ain Shams Engineering Journal* 5(3). 2014, 803-816. Google Scholar

[10]

Chun-Fei Hsu, Bore-Kuen Lee (2011), FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach. Expert Systems with Applications 38 (9) 2011, 11866-11872. Google Scholar

[11]

Gürsoy, Handan, Mehmet Önder Efe (2016). Control System Implementation on an FPGA Platform. *IFAC-PapersOnLine* 49(25) 2016, 425-430. Google Scholar

[12]

Yao, Minglin (2010), Realization of Fuzzy PID controller used in turbine speed control system with FPGA. *2010 International Conference on Future Information Technology and Management Engineering* 261-264.

[13]

Chan, Yuen Fong, M. Moallem & Wei Wang (2007). Design and implementation of modular FPGA-based PID controllers* Industrial Electronics, IEEE Transactions on* 4, 1898-1906. Google Scholar

[14]

Lima, João, Ricardo Menotti, João M. P. Cardoso & Eduardo Marques (2006). A methodology to design FPGA-based PID controllers. *Systems, Man and Cybernetics, IEEE Transactions on*, 2577-2583.

[15]

Anumandla, Kiran Kumar, Rangababu Peesapati, Samrath L. Sabat, Siba K. Udgata & Ajith Abraham (2013). Field programmable gate arrays-based differential evolution coprocessor: a case study of spectrum allocation in cognitive radio network. *IET Computers & Digital Techniques 7*:5, 221-234. Google Scholar

[16]

Alander, Jarmo, Digitaalitekniikan perusteet (2015). *Lukujärjestelmät ja koodit* [In Finnish, Digital electronics, number systems and codes]. Available: http://lipas.uwasa.fi/~TAU/AUTO1010/

[17]

Actel Corporation (2008). Zero-Power or NOT Zero-Power: That Is the Question. *Actel eZone* http://www.actel.com/eZone/Q108/p3.html

[18]

Chang, Chi-Ming, Jih-Gau Juang (2014). Real Time TRMS Control using FPGA and Hybrid PID controller. In *11*^{th} IEEE International Conference on Control & Automation (ICCA) June 18-20, 2014, Taichung, Taiwan, 983-988. Google Scholar

[19]

Chang, Changyan, Yubo Yuan, Tianlin Jiang, Zhongjie Zhou (2016). Field programmable gate array implementation of a single-input fuzzy proportional-integral.derivative controller for DC-DC buck converters. *IET Power Electronics* 9(6) 1259-1266. Google Scholar

[20]

Lucas, Ricardo, R.M. Oliveira, C. B. Nascimento, M. S. Kaster (2015). Performance Analysis of an Adaptive Gaussian Nonlinear PID Control Applied to a Step-down CC-CC Converter. *24th IEEE International Symposium on Industrial Electronics (ISIE)* 3-5 June 2015, 3-5 June 2015, 1022-1026. Google Scholar

[21]

Chen, Yajuan, Qinghai Wu (2011). Design and Implementation of PID Controller Based on FPGA and Genetic Algorithm. *2011 IEEE International Conference on Electronics and Optoelectronics (ICEOE)* v4-308-3011.

[22]

Chen, Yanni, Bin Xie, Enrong Mao (2016), Electric Tractor Motor Drive Control Based on FPGA, *IFAC-PapersOnLine 49*(16) 2016: 271-276. Google Scholar

[23]

Ponce, Pedro, Arturo Molina, Guillermo Tello, Luis Ibarra, Brian MacCleery, Miguel Ramirez (2015), Experimental study for FPGA PID position controller in CNC micro-machines, *IFAC-PapersOnLine* 48(3) 2015, 2203-2207. Google Scholar

[24]

Aguirre, Adriana A., Leonardo D. Muñoz, César A. Martín, María J. Ramírez, Carlos A. Salazar (2018), Design of Digital PID Controllers Relying on FPGA-based Techniques, IFAC-PapersOnLine 51(4) 2018, 936-941. Google Scholar

[25]

Hanhila, Mika (2015). *PID-säätimen optimointi differentiaalievoluutiolla* [Optimization of PID-controller by differential evolution], M.Sc. Thesis. University of Vaasa. https://www.tritonia.fi/download/gradu/6472

[26]

Jiang, Yuchen, Shen Yin, Okyay Kaynak (2018). Data-Driven Monitoring and Safety Control of industrial Cyber-Physical Systems: Basics and Beyond. *IEEE Access* 6, 2018, 47374-47384. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.