Jump to ContentJump to Main Navigation
Show Summary Details
More options …

e-Polymers

Editor-in-Chief: Agarwal, Seema

6 Issues per year


IMPACT FACTOR 2017: 1.111

CiteScore 2017: 1.02

SCImago Journal Rank (SJR) 2017: 0.335
Source Normalized Impact per Paper (SNIP) 2017: 0.430

Online
ISSN
1618-7229
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

Volume 13 (2013)

Volume 12 (2012)

Volume 11 (2011)

Volume 10 (2010)

Volume 9 (2009)

Volume 8 (2008)

Volume 7 (2007)

Volume 6 (2006)

Volume 5 (2005)

Volume 4 (2004)

Volume 3 (2003)

Volume 2 (2002)

Volume 1 (2001)

Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on kappa-carrageenan and sodium alginate grafted with polyacrylamide

Ali Pourjavadi
  • Corresponding author
  • Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Ave., P. O. Box 11365-9516, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Ghasemzadeh
  • Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Ave., P. O. Box 11365-9516, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Hosseinzadeh
  • Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Ave., P. O. Box 11365-9516, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-31 | DOI: https://doi.org/10.1515/epoly.2004.4.1.275

Abstract

A novel superabsorbent hydrogel was synthesized via crosslinking graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (κC) and sodium alginate (Na-Alg) backbones in a homogeneous solution. Methylenebisacrylamide (MBA) and potassium persulfate (KPS) were applied as water-soluble crosslinker and initiator, respectively. FTIR spectroscopy was used for confirming the structure of the final product. A mechanism for superabsorbent hydrogel formation was also suggested. The parameters affecting the swelling capacity of the synthesized hydrogel, i.e., κC-Alg weight ratio, concentration of AAm, MBA and KPS, as well as reaction temperature were systematically optimized for obtaining maximum absorbency. The swelling capacity of hydrogels was also measured in various salt solutions (LiCl, NaCl, KCl, MgCl2, CaCl2, SrCl2, BaCl2, and AlCl3). Due to their high swelling ability in salt solutions, the hydrogels may be referred to as ‘anti-salt superabsorbent’ polymers. The overall activation energy for the graft copolymerization reaction was found to be 374 kJ/mol. The swelling kinetics of the hydrogels in distilled water and in saline solution (0.9 wt.-% NaCl) was investigated.

About the article

Published Online: 2013-08-31

Published in Print: 2004-12-01


Citation Information: e-Polymers, Volume 4, Issue 1, 027, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly.2004.4.1.275.

Export Citation

© 2013 by Walter de Gruyter GmbH & Co..Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in