Jump to ContentJump to Main Navigation
Show Summary Details
In This Section


Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year

IMPACT FACTOR 2016: 0.949

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.154
Source Normalized Impact per Paper (SNIP) 2015: 0.100

See all formats and pricing
In This Section
Volume 14, Issue 1 (Jan 2014)

Dextran nanofiber production by needleless electrospinning process

Funda Cengiz-Çallıoğlu
  • Corresponding author
  • Engineering Faculty, Textile Engineering Department, Süleyman Demirel University, 32260, Çünür, Isparta, Turkey
  • Email:
Published Online: 2014-01-16 | DOI: https://doi.org/10.1515/epoly-2013-0021


This article presents the formation of a dextran nanofibrous layer by needleless electrospinning. Optimum process parameters such as polymer solution and addition (surfactant) concentration, voltage, distance, etc. were determined to obtain uniform and smooth dextran nanofibers. It was not possible to produce nanofibers from pure dextran/water solution. Instead, solution drops were deposited on the collector; therefore, anionic surfactant was added in various concentrations to start the nanofiber production. Also, the effects of surfactant concentration on the solution properties, spinnability and fiber properties were determined. Generally, uniform and fine nanofibers were obtained from the rod electrospinning method. The value of 2 wt% surfactant concentration was chosen as the optimum concentration to produce a dextran nanofibrous layer by roller electrospinning. According to the results, spinning performance was 0.6726 g/min per meter, average fiber diameter was 162 nm, diameter uniformity coefficient was 1.03 and the nonfibrous area was 0.5%. In conclusion, this methodology resulted in the production of good product properties such as good spinnability, fine and uniform nanofibers and high fiber density.

Keywords: dextran; nanofibers; needleless electrospinning; polymer solution; surfactant


  • 1.

    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific Publishing Co.; 2005, chapter 3, 382 p.

  • 2.

    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8. [Crossref] [PubMed]

  • 3.

    Fang X, Reneker DH. DNA fibers by electrospinning. J Macromol Sci Part B Phys. 1997;36(2):169. [Crossref]

  • 4.

    Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori Silk with Poly(ethylene oxide). Biomacromolecules. 2002;3(6):1233–9. [PubMed] [Crossref]

  • 5.

    Sun K, Li ZH. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polym Lett. 2011;5(4):342–61. [Crossref] [Web of Science]

  • 6.

    Okhawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–5.

  • 7.

    Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45(15):5361–8. [Crossref]

  • 8.

    Son WK, Youk JH, Lee TS, Park WH. Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci Part B Polym Phys. 2004;42(1):5–11. [Crossref]

  • 9.

    Liu H, Hsieh Y-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys. 2002;40(18):2119–29. [Crossref]

  • 10.

    Jiang H, Fang D, Hsiao BS, Chu B, Chen W. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules. 2004;5(2):326–33. [PubMed] [Crossref]

  • 11.

    Hovgaard L, Brondsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release. 1995;36(1–2):159–66. [Web of Science] [Crossref]

  • 12.

    Hennink WE, de Jong SJ, Bos GW, VeldhuisTFJ, van Nostrum CF. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm. 2004;277(1–2):99–104.

  • 13.

    Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26(35):7436–46. [Crossref] [PubMed]

  • 14.

    Ritcharoen W, Thaiying Y, Saejeng Y, Jangchud I, Rangkupan R, Meechaisue C, Supaphol P. Electrospun dextran fibrous membranes. Cellulose. 2008;15(3):435–44. [Web of Science] [Crossref]

  • 15.

    Shawki MM, Hereba AM, Ghazal A. Formation and characterisation of antimicrobial dextran nanofibers. Rom J Biophys. 2010;20(4):335–46.

  • 16.

    Spano F, Massaro A. Electrospun dextran-based nanofibers for biosensing and biomedical applications. Acad Res J. 2012;1: 23–30.

  • 17.

    Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha Y-S, Jung C-H, El-Newehy M, Kim HY. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym. 2012;90(4):1786–93. [Crossref] [PubMed] [Web of Science]

  • 18.

    Kim Y-J, Ebara M, Aoyagi T. Temperature-responsive electrospun nanofibers for ‘on-off’ switchable release of dextran. Sci Technol Adv Mater [Internet]. 2012;13. Available from: http://dx.doi.org/10.1088/1468-6996/13/6/064203. [Web of Science] [Crossref]

  • 19.

    Lukas D, Sarkar A, Martinova L, Vodsed’alkova K, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). Text Prog. 2009;41(2):59–140. [Crossref]

  • 20.

    Yarin AL, Zussman E. Upward needleless electrospinning of multiple nanofibers. Polymer. 2004;45(9):2977–80. [Crossref]

  • 21.

    Dosunmu OO, Chase G, Kataphinan G, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology. 2006;17(4):1123–7. [PubMed] [Crossref]

  • 22.

    Tang S, Zeng Y, Wang X. Splashing needleless electrospinning of nanofibers. Polym Eng Sci. 2010;50(11):2252–7. [Web of Science] [Crossref]

  • 23.

    Liu Y, He J-H. Bubble electrospinning for mass production of nanofibers. Int J Nonlinear Sci Numer Simul. 2007;8(3):393–6.

  • 24.

    Lukas D. Proceedings of the AUTEX 2005, 5th World Textile Conference, June 27–29, 2005, Slovenia, pp. 606–11.

  • 25.

    Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. U.S. Patent, WO2005024101, 2005.

  • 26.

    Cengiz F, Dao TA, Jirsak O. Influence of solution properties on the roller electrospinning of poly(vinyl alcohol). Polym Eng Sc. 2010;50(5):936–43. [Crossref]

  • 27.

    Dao AT. PhD thesis, Technical University of Liberec, Liberec, Czech Republic, 2011.

  • 28.

    Cengiz F, Jirsak O. The effect of salt on the roller electrospinning of polyurethane nanofibers. Fibers Polym. 2009;10(2):177–84. [Crossref] [Web of Science]

  • 29.

    Cengiz-Çallıoğlu F. Unpublished PhD thesis, Süleyman Demirel University, Isparta, Turkey, 2011.

  • 30.

    Yener F, Jirsak O. Proceedings of Nanocon, September 21–23, 2011, Brno, Czech Republic.

  • 31.

    Wang SQ, He J-H, Xu L. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers. Polym Int. 2008;57(9):1079–82. [Crossref]

  • 32.

    Talwar S, Krishnan AS, Hinestroza JP, Pourdeyhimi B, Khan SA. Electrospun nanofibers with associative polymer−surfactant systems. Macromolecules. 2010;43(18):7650–6. [Crossref] [Web of Science]

  • 33.

    Lin T, Wang H, Wang H, Wang X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology. 2004;15(9):1375–81. [Crossref]

  • 34.

    Kriegel C, Kit KM, McClements DJ, Weiss J. Influence of surfactant type and concentration on electrospinning of chitosan-poly(ethylene oxide) blend nanofibers. Food Biophys. 2009;4(3):213–28. [Crossref] [Web of Science]

  • 35.

    Heikkilä P, Harlin A. Electrospinning of polyacrylonitrile (PAN) solution: effect of conductive additive and filler on the process. eXPRESS Polym Lett. 2009;3(7):437–45. [Crossref] [Web of Science]

  • 36.

    You Y, Lee SJ, Min B-M, Park WH. Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci. 2006;99(3):1214–21. [Crossref]

  • 37.

    Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45(9):2959–66. [Crossref]

  • 38.

    Pokorny P, Jirsak O. Proceedings of the TexSci 10, September 6–8, 2010, Technical University of Liberec, Liberec, Czech Republic.

  • 39.

    Adomaviciüte E, Stanys S, Banuskeviciüte A, Milasius R. Influence of the shape of the bottom rotating electrode on the structure of electrospun mats. Fibers Text East Eur. 2010;18: 49–53.

  • 40.

    Taylor GI. Disintegration of water drops in an electric field. Proc R Soc A, Math Phys Sci. 1964;280:383–97.

  • 41.

    Cengiz-Çallıoğlu F, Jirsak O, Dayık M. Investigation into the relationships between independent and dependent parameters in roller electrospinning of polyurethane. Text Res J. 2012;83(7):718–29. [Web of Science]

  • 42.

    Xie KL, Sun Y, Zhang YH, Hua Y. Synthesis and application of silicone-acrylic polymer containing cationic groups. Int J Nonlinear Sci Numer Simul. 2006;7(4):483–6.

About the article

Corresponding author: Funda Cengiz-Çallıoğlu, Engineering Faculty, Textile Engineering Department, Süleyman Demirel University, 32260, Çünür, Isparta, Turkey, e-mail:

Received: 2013-10-03

Accepted: 2013-11-05

Published Online: 2014-01-16

Published in Print: 2014-01-01

Citation Information: e-Polymers, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2013-0021. Export Citation

Comments (0)

Please log in or register to comment.
Log in