Jump to ContentJump to Main Navigation
Show Summary Details
More options …

e-Polymers

Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year


IMPACT FACTOR 2016: 0.949

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2016: 0.270
Source Normalized Impact per Paper (SNIP) 2016: 0.318

Online
ISSN
1618-7229
See all formats and pricing
More options …

Dextran nanofiber production by needleless electrospinning process

Funda Cengiz-Çallıoğlu
  • Corresponding author
  • Engineering Faculty, Textile Engineering Department, Süleyman Demirel University, 32260, Çünür, Isparta, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-16 | DOI: https://doi.org/10.1515/epoly-2013-0021

Abstract

This article presents the formation of a dextran nanofibrous layer by needleless electrospinning. Optimum process parameters such as polymer solution and addition (surfactant) concentration, voltage, distance, etc. were determined to obtain uniform and smooth dextran nanofibers. It was not possible to produce nanofibers from pure dextran/water solution. Instead, solution drops were deposited on the collector; therefore, anionic surfactant was added in various concentrations to start the nanofiber production. Also, the effects of surfactant concentration on the solution properties, spinnability and fiber properties were determined. Generally, uniform and fine nanofibers were obtained from the rod electrospinning method. The value of 2 wt% surfactant concentration was chosen as the optimum concentration to produce a dextran nanofibrous layer by roller electrospinning. According to the results, spinning performance was 0.6726 g/min per meter, average fiber diameter was 162 nm, diameter uniformity coefficient was 1.03 and the nonfibrous area was 0.5%. In conclusion, this methodology resulted in the production of good product properties such as good spinnability, fine and uniform nanofibers and high fiber density.

Keywords: dextran; nanofibers; needleless electrospinning; polymer solution; surfactant

References

  • 1.

    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An Introduction to Electrospinning and Nanofibers. Singapore: World Scientific Publishing Co.; 2005, chapter 3, 382 p.Google Scholar

  • 2.

    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.CrossrefPubMedGoogle Scholar

  • 3.

    Fang X, Reneker DH. DNA fibers by electrospinning. J Macromol Sci Part B Phys. 1997;36(2):169.CrossrefGoogle Scholar

  • 4.

    Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori Silk with Poly(ethylene oxide). Biomacromolecules. 2002;3(6):1233–9.PubMedCrossrefGoogle Scholar

  • 5.

    Sun K, Li ZH. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polym Lett. 2011;5(4):342–61.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    Okhawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Commun. 2004;25(18):1600–5.Google Scholar

  • 7.

    Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45(15):5361–8.CrossrefGoogle Scholar

  • 8.

    Son WK, Youk JH, Lee TS, Park WH. Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci Part B Polym Phys. 2004;42(1):5–11.CrossrefGoogle Scholar

  • 9.

    Liu H, Hsieh Y-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys. 2002;40(18):2119–29.CrossrefGoogle Scholar

  • 10.

    Jiang H, Fang D, Hsiao BS, Chu B, Chen W. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules. 2004;5(2):326–33.PubMedCrossrefGoogle Scholar

  • 11.

    Hovgaard L, Brondsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release. 1995;36(1–2):159–66.Web of ScienceCrossrefGoogle Scholar

  • 12.

    Hennink WE, de Jong SJ, Bos GW, VeldhuisTFJ, van Nostrum CF. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm. 2004;277(1–2):99–104.Google Scholar

  • 13.

    Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26(35):7436–46.CrossrefPubMedGoogle Scholar

  • 14.

    Ritcharoen W, Thaiying Y, Saejeng Y, Jangchud I, Rangkupan R, Meechaisue C, Supaphol P. Electrospun dextran fibrous membranes. Cellulose. 2008;15(3):435–44.Web of ScienceCrossrefGoogle Scholar

  • 15.

    Shawki MM, Hereba AM, Ghazal A. Formation and characterisation of antimicrobial dextran nanofibers. Rom J Biophys. 2010;20(4):335–46.Google Scholar

  • 16.

    Spano F, Massaro A. Electrospun dextran-based nanofibers for biosensing and biomedical applications. Acad Res J. 2012;1: 23–30.Google Scholar

  • 17.

    Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha Y-S, Jung C-H, El-Newehy M, Kim HY. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym. 2012;90(4):1786–93.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 18.

    Kim Y-J, Ebara M, Aoyagi T. Temperature-responsive electrospun nanofibers for ‘on-off’ switchable release of dextran. Sci Technol Adv Mater [Internet]. 2012;13. Available from: http://dx.doi.org/10.1088/1468-6996/13/6/064203.Web of ScienceCrossref

  • 19.

    Lukas D, Sarkar A, Martinova L, Vodsed’alkova K, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century). Text Prog. 2009;41(2):59–140.CrossrefGoogle Scholar

  • 20.

    Yarin AL, Zussman E. Upward needleless electrospinning of multiple nanofibers. Polymer. 2004;45(9):2977–80.CrossrefGoogle Scholar

  • 21.

    Dosunmu OO, Chase G, Kataphinan G, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology. 2006;17(4):1123–7.PubMedCrossrefGoogle Scholar

  • 22.

    Tang S, Zeng Y, Wang X. Splashing needleless electrospinning of nanofibers. Polym Eng Sci. 2010;50(11):2252–7.Web of ScienceCrossrefGoogle Scholar

  • 23.

    Liu Y, He J-H. Bubble electrospinning for mass production of nanofibers. Int J Nonlinear Sci Numer Simul. 2007;8(3):393–6.Google Scholar

  • 24.

    Lukas D. Proceedings of the AUTEX 2005, 5th World Textile Conference, June 27–29, 2005, Slovenia, pp. 606–11.Google Scholar

  • 25.

    Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. U.S. Patent, WO2005024101, 2005.Google Scholar

  • 26.

    Cengiz F, Dao TA, Jirsak O. Influence of solution properties on the roller electrospinning of poly(vinyl alcohol). Polym Eng Sc. 2010;50(5):936–43.CrossrefGoogle Scholar

  • 27.

    Dao AT. PhD thesis, Technical University of Liberec, Liberec, Czech Republic, 2011.Google Scholar

  • 28.

    Cengiz F, Jirsak O. The effect of salt on the roller electrospinning of polyurethane nanofibers. Fibers Polym. 2009;10(2):177–84.CrossrefWeb of ScienceGoogle Scholar

  • 29.

    Cengiz-Çallıoğlu F. Unpublished PhD thesis, Süleyman Demirel University, Isparta, Turkey, 2011.Google Scholar

  • 30.

    Yener F, Jirsak O. Proceedings of Nanocon, September 21–23, 2011, Brno, Czech Republic.Google Scholar

  • 31.

    Wang SQ, He J-H, Xu L. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers. Polym Int. 2008;57(9):1079–82.CrossrefGoogle Scholar

  • 32.

    Talwar S, Krishnan AS, Hinestroza JP, Pourdeyhimi B, Khan SA. Electrospun nanofibers with associative polymer−surfactant systems. Macromolecules. 2010;43(18):7650–6.CrossrefWeb of ScienceGoogle Scholar

  • 33.

    Lin T, Wang H, Wang H, Wang X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology. 2004;15(9):1375–81.CrossrefGoogle Scholar

  • 34.

    Kriegel C, Kit KM, McClements DJ, Weiss J. Influence of surfactant type and concentration on electrospinning of chitosan-poly(ethylene oxide) blend nanofibers. Food Biophys. 2009;4(3):213–28.CrossrefWeb of ScienceGoogle Scholar

  • 35.

    Heikkilä P, Harlin A. Electrospinning of polyacrylonitrile (PAN) solution: effect of conductive additive and filler on the process. eXPRESS Polym Lett. 2009;3(7):437–45.CrossrefWeb of ScienceGoogle Scholar

  • 36.

    You Y, Lee SJ, Min B-M, Park WH. Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci. 2006;99(3):1214–21.CrossrefGoogle Scholar

  • 37.

    Son WK, Youk JH, Lee TS, Park WH. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45(9):2959–66.CrossrefGoogle Scholar

  • 38.

    Pokorny P, Jirsak O. Proceedings of the TexSci 10, September 6–8, 2010, Technical University of Liberec, Liberec, Czech Republic.Google Scholar

  • 39.

    Adomaviciüte E, Stanys S, Banuskeviciüte A, Milasius R. Influence of the shape of the bottom rotating electrode on the structure of electrospun mats. Fibers Text East Eur. 2010;18: 49–53.Google Scholar

  • 40.

    Taylor GI. Disintegration of water drops in an electric field. Proc R Soc A, Math Phys Sci. 1964;280:383–97.Google Scholar

  • 41.

    Cengiz-Çallıoğlu F, Jirsak O, Dayık M. Investigation into the relationships between independent and dependent parameters in roller electrospinning of polyurethane. Text Res J. 2012;83(7):718–29.Web of ScienceGoogle Scholar

  • 42.

    Xie KL, Sun Y, Zhang YH, Hua Y. Synthesis and application of silicone-acrylic polymer containing cationic groups. Int J Nonlinear Sci Numer Simul. 2006;7(4):483–6.Google Scholar

About the article

Corresponding author: Funda Cengiz-Çallıoğlu, Engineering Faculty, Textile Engineering Department, Süleyman Demirel University, 32260, Çünür, Isparta, Turkey, e-mail:


Received: 2013-10-03

Accepted: 2013-11-05

Published Online: 2014-01-16

Published in Print: 2014-01-01


Citation Information: e-Polymers, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2013-0021.

Export Citation

©2014 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Neslihan Nohut Maslakci, Seyhan Ulusoy, Emre Uygun, Halime Çevikbaş, Lutfi Oksuz, Hatice Kaplan Can, and Aysegul Uygun Oksuz
Polymer Bulletin, 2017, Volume 74, Number 8, Page 3283

Comments (0)

Please log in or register to comment.
Log in