Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

e-Polymers

Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year


IMPACT FACTOR 2016: 0.949

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.154
Source Normalized Impact per Paper (SNIP) 2015: 0.100

Online
ISSN
1618-7229
See all formats and pricing
In This Section
Volume 14, Issue 2 (Mar 2014)

Polymer origami: programming the folding with shape

Leonid Ionov
  • Corresponding author
  • Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
  • Email:
Published Online: 2014-03-04 | DOI: https://doi.org/10.1515/epoly-2013-0082

Abstract

The design of three-dimensional (3D) microstructures is an interesting, fascinating and highly challenging research topic. One of the very promising approaches for 3D microstructuring, inspired by the Japanese art of paper folding – origami, is based on self-folding films. Such films consist of two kinds of materials with different volume expansion properties and are able to form different structures ranging from simple tubes to highly complex 3D shapes. In this review, our recent progress in the design of polymer bilayers and understanding of their folding is summarized.

Keywords: actuator; hydrogel; polymer; self-folding; stimuli-responsive

References

  • 1.

    Leong TG, Zarafshar AM, Gracias DH. Three-dimensional fabrication at small size scales. Small. 2010;6(7):792–806. [PubMed] [Web of Science] [Crossref]

  • 2.

    Ionov, L. 3D microfabrication using stimuli-responsive self-folding polymer films. Polym Rev. 2013;53(1):92–107. [Web of Science] [Crossref]

  • 3.

    Ionov, L. Biomimetic hydrogel-based actuating systems. Adv Funct Mater. 2013;23(36):4555–70. [Crossref] [Web of Science]

  • 4.

    Ionov, L. Soft microorigami: self-folding polymer films. Soft Matter. 2011;7:6786–91. [Crossref]

  • 5.

    Cho JH, Keung MD, Verellen N, Lagae L, Moshchalkov VV, Van Dorpe P, Gracias DH. Nanoscale origami for 3D optics. Small. 2011;7(14):1943–8. [Crossref] [PubMed] [Web of Science]

  • 6.

    Lu YW, Kim CJ. Microhand for biological applications Appl Phys Lett. 2006;89:262107. [Crossref]

  • 7.

    Yi YW, Liu, C. Assembly of micro-optical devices using magnetic actuation. Sens Actuators A Phys. 1999;78(2–3):205–11.

  • 8.

    Luo JK, Huang R, He JH, Fu YQ, Flewitt AJ, Spearing SM, Fleck NA, Milne WI. Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure. Sens Actuators A Phys. 2006;132(1):346–53.

  • 9.

    Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG. Self-propelled nanotools. ACS Nano. 2012;6(2):1751–6. [PubMed] [Crossref] [Web of Science]

  • 10.

    Stoychev G, Puretskiy N, Ionov, L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. 2011;7:3277–9. [Crossref] [Web of Science]

  • 11.

    Luchnikov V, Sydorenko O, Stamm M. Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater. 2005;17(9):1177–82. [Crossref]

  • 12.

    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101–13. [Web of Science] [PubMed] [Crossref]

  • 13.

    Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science. 2007;315(5811):487–90. [Web of Science]

  • 14.

    Zarzar LD, Kim P, Aizenberg J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv Mater. 2011;23(12):1442–6. [Crossref] [PubMed] [Web of Science]

  • 15.

    Zakharchenko S, Puretskiy N, Stoychev G, Stamm M, Ionov L. Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter. 2010;6(12): 2633–6. [Crossref] [Web of Science]

  • 16.

    Ionov LJ. Actively-moving materials based on stimuli-responsive polymers. Mater Chem. 2010;20(17):3382–90. [Web of Science] [Crossref]

  • 17.

    Tokarev I, Minko S. Stimuli-responsive hydrogel thin films. Soft Matter. 2009;5(3):511–24. [Web of Science] [Crossref]

  • 18.

    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev. 2001;53(3):321–39. [Web of Science] [Crossref]

  • 19.

    Wu ZL, Moshe M, Greener J, Therien-Aubin H, Nie Z, Sharon E, Kumacheva E. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat Commun. 2013;4:1586. [Web of Science] [PubMed] [Crossref]

  • 20.

    Nie ZH, Li W, Seo M, Xu SQ, Kumacheva E. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc. 2006;128(29):9408–12. [Crossref] [PubMed]

  • 21.

    Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. Designing responsive buckled surfaces by halftone gel lithography. Science. 2012;335(6073): 1201–5. [Web of Science]

  • 22.

    Timoshenko S. Analysis of bi-metal thermostats. J Opt Soc Am Rev Sci Instrum. 1925;11(3):233–55. [Crossref]

  • 23.

    Stoychev G, Zakharchenko S, Turcaud S, Dunlop JWC, Ionov L. Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano. 2012;6(5):3925–34. [Crossref] [PubMed] [Web of Science]

  • 24.

    Stoychev G, Turcaud S, Dunlop JWC, Ionov L. Hierarchical multi-step folding of polymer bilayers. Adv Funct Mater. 2013;23(18):2295–300. [Web of Science] [Crossref]

  • 25.

    Azam A, Laflin KE, Jamal M, Fernandes R, Gracias DH. Self-folding micropatterned polymeric containers. Biomed Microdev. 2011;13(1):51–8. [Crossref]

  • 26.

    Zakharchenko S, Sperling E, Ionov L. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules. 2011;12(6):2211–5. [Web of Science] [PubMed] [Crossref]

About the article

Corresponding author: Leonid Ionov, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany, Tel: +49 3514658271, e-mail:


Received: 2013-12-03

Accepted: 2014-02-10

Published Online: 2014-03-04

Published in Print: 2014-03-01



Citation Information: e-Polymers, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2013-0082. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Shaohua Jiang, Fangyao Liu, Arne Lerch, Leonid Ionov, and Seema Agarwal
Advanced Materials, 2015, Page n/a

Comments (0)

Please log in or register to comment.
Log in