Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year

IMPACT FACTOR 2016: 0.949

CiteScore 2017: 1.02

SCImago Journal Rank (SJR) 2017: 0.335
Source Normalized Impact per Paper (SNIP) 2017: 0.430

See all formats and pricing
More options …
Volume 14, Issue 2


Volume 13 (2013)

Volume 12 (2012)

Volume 11 (2011)

Volume 10 (2010)

Volume 9 (2009)

Volume 8 (2008)

Volume 7 (2007)

Volume 6 (2006)

Volume 5 (2005)

Volume 4 (2004)

Volume 3 (2003)

Volume 2 (2002)

Volume 1 (2001)

Polymer origami: programming the folding with shape

Leonid Ionov
Published Online: 2014-03-04 | DOI: https://doi.org/10.1515/epoly-2013-0082


The design of three-dimensional (3D) microstructures is an interesting, fascinating and highly challenging research topic. One of the very promising approaches for 3D microstructuring, inspired by the Japanese art of paper folding – origami, is based on self-folding films. Such films consist of two kinds of materials with different volume expansion properties and are able to form different structures ranging from simple tubes to highly complex 3D shapes. In this review, our recent progress in the design of polymer bilayers and understanding of their folding is summarized.

Keywords: actuator; hydrogel; polymer; self-folding; stimuli-responsive


  • 1.

    Leong TG, Zarafshar AM, Gracias DH. Three-dimensional fabrication at small size scales. Small. 2010;6(7):792–806.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 2.

    Ionov, L. 3D microfabrication using stimuli-responsive self-folding polymer films. Polym Rev. 2013;53(1):92–107.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Ionov, L. Biomimetic hydrogel-based actuating systems. Adv Funct Mater. 2013;23(36):4555–70.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Ionov, L. Soft microorigami: self-folding polymer films. Soft Matter. 2011;7:6786–91.CrossrefGoogle Scholar

  • 5.

    Cho JH, Keung MD, Verellen N, Lagae L, Moshchalkov VV, Van Dorpe P, Gracias DH. Nanoscale origami for 3D optics. Small. 2011;7(14):1943–8.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 6.

    Lu YW, Kim CJ. Microhand for biological applications Appl Phys Lett. 2006;89:262107.CrossrefGoogle Scholar

  • 7.

    Yi YW, Liu, C. Assembly of micro-optical devices using magnetic actuation. Sens Actuators A Phys. 1999;78(2–3):205–11.Google Scholar

  • 8.

    Luo JK, Huang R, He JH, Fu YQ, Flewitt AJ, Spearing SM, Fleck NA, Milne WI. Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure. Sens Actuators A Phys. 2006;132(1):346–53.Google Scholar

  • 9.

    Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG. Self-propelled nanotools. ACS Nano. 2012;6(2):1751–6.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 10.

    Stoychev G, Puretskiy N, Ionov, L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. 2011;7:3277–9.CrossrefWeb of ScienceGoogle Scholar

  • 11.

    Luchnikov V, Sydorenko O, Stamm M. Self-rolled polymer and composite polymer/metal micro- and nanotubes with patterned inner walls. Adv Mater. 2005;17(9):1177–82.CrossrefGoogle Scholar

  • 12.

    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101–13.Web of SciencePubMedCrossrefGoogle Scholar

  • 13.

    Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science. 2007;315(5811):487–90.Web of ScienceGoogle Scholar

  • 14.

    Zarzar LD, Kim P, Aizenberg J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv Mater. 2011;23(12):1442–6.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 15.

    Zakharchenko S, Puretskiy N, Stoychev G, Stamm M, Ionov L. Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter. 2010;6(12): 2633–6.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Ionov LJ. Actively-moving materials based on stimuli-responsive polymers. Mater Chem. 2010;20(17):3382–90.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Tokarev I, Minko S. Stimuli-responsive hydrogel thin films. Soft Matter. 2009;5(3):511–24.Web of ScienceCrossrefGoogle Scholar

  • 18.

    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev. 2001;53(3):321–39.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Wu ZL, Moshe M, Greener J, Therien-Aubin H, Nie Z, Sharon E, Kumacheva E. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat Commun. 2013;4:1586.Web of SciencePubMedCrossrefGoogle Scholar

  • 20.

    Nie ZH, Li W, Seo M, Xu SQ, Kumacheva E. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc. 2006;128(29):9408–12.CrossrefPubMedGoogle Scholar

  • 21.

    Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. Designing responsive buckled surfaces by halftone gel lithography. Science. 2012;335(6073): 1201–5.Web of ScienceGoogle Scholar

  • 22.

    Timoshenko S. Analysis of bi-metal thermostats. J Opt Soc Am Rev Sci Instrum. 1925;11(3):233–55.CrossrefGoogle Scholar

  • 23.

    Stoychev G, Zakharchenko S, Turcaud S, Dunlop JWC, Ionov L. Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano. 2012;6(5):3925–34.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 24.

    Stoychev G, Turcaud S, Dunlop JWC, Ionov L. Hierarchical multi-step folding of polymer bilayers. Adv Funct Mater. 2013;23(18):2295–300.Web of ScienceCrossrefGoogle Scholar

  • 25.

    Azam A, Laflin KE, Jamal M, Fernandes R, Gracias DH. Self-folding micropatterned polymeric containers. Biomed Microdev. 2011;13(1):51–8.CrossrefGoogle Scholar

  • 26.

    Zakharchenko S, Sperling E, Ionov L. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules. 2011;12(6):2211–5.Web of SciencePubMedCrossrefGoogle Scholar

About the article

Corresponding author: Leonid Ionov, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany, Tel: +49 3514658271, e-mail:

Received: 2013-12-03

Accepted: 2014-02-10

Published Online: 2014-03-04

Published in Print: 2014-03-01

Citation Information: e-Polymers, Volume 14, Issue 2, Pages 109–114, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2013-0082.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jinrong Wang, Jianfeng Wang, Zhuo Chen, Shaoli Fang, Ying Zhu, Ray H. Baughman, and Lei Jiang
Chemistry of Materials, 2017
Kanna Aoki, Keita Ishiguro, Masaki Denokami, Yuya Tanahashi, Kentaro Furusawa, Norihiko Sekine, Tadafumi Adschiri, and Minoru Fujii
Small, 2017, Page 1701630
Lucas Montero de Espinosa, Worarin Meesorn, Dafni Moatsou, and Christoph Weder
Chemical Reviews, 2017
Ling Peng, Jian Zhu, and Seema Agarwal
Macromolecular Rapid Communications, 2017, Volume 38, Number 10, Page 1700034
Li Liu, Ali Ghaemi, Stephan Gekle, and Seema Agarwal
Advanced Materials, 2016, Volume 28, Number 44, Page 9792
Li Liu, Shaohua Jiang, Yue Sun, and Seema Agarwal
Advanced Functional Materials, 2016, Volume 26, Number 7, Page 1021
Shaohua Jiang, Fangyao Liu, Arne Lerch, Leonid Ionov, and Seema Agarwal
Advanced Materials, 2015, Volume 27, Number 33, Page 4865

Comments (0)

Please log in or register to comment.
Log in