Jump to ContentJump to Main Navigation
Show Summary Details
More options …

e-Polymers

Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year


IMPACT FACTOR 2016: 0.949

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2016: 0.270
Source Normalized Impact per Paper (SNIP) 2016: 0.318

Online
ISSN
1618-7229
See all formats and pricing
More options …

Biosorbent immobilized nanotube reinforced hydrogel carriers for heavy metal removal processes

Emre Tekay / Sinan Şen / Demet Aydınoğlu / Nihan Nugay
  • Department of Chemistry, Polymer Research Center, Boğaziçi University, İstanbul 34342, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-13 | DOI: https://doi.org/10.1515/epoly-2015-0168

Abstract

A series of natural composite hydrogels containing a “3-in-1” type triple adsorbent system are designed. For this purpose, Spirulina (Sp) biosorbent is immobilized on/in halloysite nanotubes in different loadings and then physically crosslinked chitosan composite hydrogels are prepared. The water absorbency and Cr (VI) adsorption capacity in neutral pH medium and wet mechanical strength as well as their morphologies are all reported as a function of Sp immobilized nanotube loadings. The use of Sp biosorbent results in composite hydrogels with high water absorbency, wet strength and thermal stability. Spirulina enlarges the metal adsorption windows efficiently and the Freundlich isotherm model can fit the fundamental metal adsorption data well. It is believed that with optimized special composite hydrogel morphologies, all positively charged receptors of the Sp and the nanotubes behave as collector domains for chromate anions.

This article offers supplementary material which is provided at the end of the article.

Keywords: chitosan; composite hydrogel; halloysite nanotube; metal adsorption; Spirulina biosorbent

References

  • 1.

    Ewan KBR, Pamphlett R. Increased inorganic mercury in spinal motor-neurons following chelating-agents. Neurotoxicology 1996;17(2):343–9.Google Scholar

  • 2.

    Jinhua W, Xiang Z, Bing Z, Yafei Z, Rui Z, Jindun L, Rongfeng C. Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination 2010;259:22–8.Google Scholar

  • 3.

    Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technol. 2009;100:2770–6.CrossrefWeb of ScienceGoogle Scholar

  • 4.

    Gupta VK, Rastogi A. Biosorption of hexavalent chromium by raw and acidtreated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater. 2009;163:396–402.Google Scholar

  • 5.

    Koivula MP, Kujala K, Rönkkömäki H, Mäkelä M. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. J Hazard Mater. 2009;164:345–52.Web of ScienceGoogle Scholar

  • 6.

    Maryuk O, Pikus S, Olszewska E, Majdan M, Skrzypek H, Zieba E. Benzyldimethyloctadecylammonium bentonite in chromates adsorption. Mater Lett. 2005;59:2015–17.Google Scholar

  • 7.

    Aydınoğlu D, Akgül Ö, Bayram V, Şen S. Polymer nanocomposite hydrogels with improved metal adsorption capacity and swelling behavior: influence of spirulina immobilization onto montmorillonite clay. Polym-Plast Technol Eng. 2014;53:1706–22.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Wang J, Chen C. Chitosan based biosorbents: modification and applications for biosorption of heavy metals and radionuclides. Bioresource Technol. 2014;160:129–41.Web of ScienceGoogle Scholar

  • 9.

    Rawtani D, Agrawal YK. Multifarious applications of halloysite nano tubes: a review. Rev Adv Mater Sci. 2012;30:282–95.Google Scholar

  • 10.

    Palantöken S, Tekay E, Şen S, Nugay T, Nugay N. A novel nonchemical approach to the expansion of halloysite nanotubes and their uses in chitosan composite hydrogels for broad-spectrum dye adsorption capacity. Polym Compos. 2015; in press, doi: 10.1002/pc.23473.CrossrefGoogle Scholar

  • 11.

    Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotech Adv. 2009;27(2):195–226.CrossrefGoogle Scholar

  • 12.

    Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2009;84(1): 13–28.Web of ScienceCrossrefGoogle Scholar

  • 13.

    Arunakumara KKIU, Zhang X, Xiaojin S. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of spirulina (arthrospira) platensis. J Ocean Univ Chin. 2008;7(4):397–403.Google Scholar

  • 14.

    Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae spirulina sp: kinetics, equilibrium and the mechanism of the process. Chemosphere 2005;59(1):75–84.CrossrefGoogle Scholar

  • 15.

    Aydinoglu D, Şen S, Helvacioglu E, Nugay T, Nugay N. Tuning of heavy metal removal efficiency from water via micro algae/hydrogel composites. E-polymers 2013;13 (1):163–79.Google Scholar

  • 16.

    Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard Methods for The Examination of Water and Wastewater. 18th ed. Washington, DC: American Public Health Association; 1992. 59 p.Google Scholar

  • 17.

    Demori R, Oviedo MS, Mauler RS. Evaluation of surfactants addition as compatibilizers for halloysite nanotubes filled polypropylene nanocomposites. AIP Conf Proc. 2014;1593:274–77.Google Scholar

  • 18.

    Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 2008;112:15742–51.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Addullayev E, Joshi A, Wei W, Zhao Y, Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 2012;6:7216–26.CrossrefWeb of ScienceGoogle Scholar

  • 20.

    Aranaz I, Gutierrez MC, Ferrer ML, Monte FD. Preparation of chitosan nanocomposites with a macroporous structure by unidirectional freezing and subsequent freeze-drying. Mar Drugs 2014;12:5619–42.CrossrefWeb of ScienceGoogle Scholar

  • 21.

    Cho J, Heuzey MC, Begin A, Carreau PJ. Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 2005;6:3267–75.CrossrefGoogle Scholar

  • 22.

    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155–61.CrossrefGoogle Scholar

  • 23.

    Yusof AM, Malek NA. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J Hazard Mater. 2009;162:1019–24.Google Scholar

  • 24.

    Vachoud L, Zydowicz N, Domard A. Formation and characterisation of a physical chitin gel. Carbohydr Res. 1997;302:169–77.Google Scholar

  • 25.

    Yuan P, Southon PD, Liu Z, Kepert CJ. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology 2012;23:375705.Web of ScienceCrossrefGoogle Scholar

  • 26.

    Bordeepong S, Bhongsuwan, D, Pungrassami T, Bhongsuwan T. Characterization of halloysite from Thung Yai District, Nakhon Si Thammarat Province, in Southern Thailand. Songklanakarin J Sci Technol. 2011;33:599–607.Google Scholar

  • 27.

    Theivarasu C, Mylsamy S. Equilibrium and kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. Int J Eng Sci Technol. 2010;2(11):6284–92.Google Scholar

About the article

Corresponding author: Sinan Şen, Department of Polymer Engineering, Yalova University, Yalova 77100, Turkey, Tel.: +90 2268155411, Fax: +90 2268155401, e-mail:


Received: 2015-07-20

Accepted: 2015-08-21

Published Online: 2015-10-13

Published in Print: 2016-01-01


Citation Information: e-Polymers, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2015-0168.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Hatice Hande Mert, Emre Tekay, Nihan Nugay, Turgut Nugay, and Sinan Şen
Polymer Engineering & Science, 2017

Comments (0)

Please log in or register to comment.
Log in