Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year

IMPACT FACTOR 2017: 1.111

CiteScore 2017: 1.02

SCImago Journal Rank (SJR) 2017: 0.335
Source Normalized Impact per Paper (SNIP) 2017: 0.430

See all formats and pricing
More options …
Volume 17, Issue 4


Volume 13 (2013)

Volume 12 (2012)

Volume 11 (2011)

Volume 10 (2010)

Volume 9 (2009)

Volume 8 (2008)

Volume 7 (2007)

Volume 6 (2006)

Volume 5 (2005)

Volume 4 (2004)

Volume 3 (2003)

Volume 2 (2002)

Volume 1 (2001)

Ultralight sponges of poly(para-xylylene) by template-assisted chemical vapour deposition

Tobias Moss / Ilka E. Paulus / Daniel Raps / Volker Altstädt / Andreas Greiner
Published Online: 2017-03-22 | DOI: https://doi.org/10.1515/epoly-2016-0329


Particle foams and open cell sponges play nowadays an important role in academia and industrial research. The fabrication of new high-performance foams is one of the challenges. Until now, it is impossible to visualise the quality of particle foams, and the quantification is only possible with expensive analytical methods like scanning electron microscopy. In this work, we demonstrate a simple method for the visualisation of void sizes and defects inside particle foams on the basis of expanded polystyrene. The concept was transferred to porous materials, which work as templates for the formation of ultralight poly(para-xylylene) foams with stunning properties.

Keywords: chemical vapour deposition; poly(para-xylylene); template; ultralight foams


  • 1.

    Brody AL, Marsh KS, editors. The Wiley encyclopedia of packaging technology. 2nd ed. New York: Wiley; 1997. 451 p.Google Scholar

  • 2.

    Raps D, Hossieny N, Park CB, Altstädt V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015;56:5.Web of ScienceCrossrefGoogle Scholar

  • 3.

    Crevecoeur JJ, Coolegem JF, Nelissen L, Lemstra PJ. Water expandable polystyrene (WEPS) Part 3. Expansion behavior. Polymer 1999;40:3697.CrossrefGoogle Scholar

  • 4.

    Stafford CM, Russell TP, McCarthy JT. Expansion of Polystyrene using supercritical carbon dioxide: effects of molecular weight, polydispersity, and low molecular weight components. Macromolecules 1999;32:7610.CrossrefGoogle Scholar

  • 5.

    Rossacci J, Shivkumar S. Bead fusion in polystyrene foams. J Mater Sci. 2003;38:201.CrossrefGoogle Scholar

  • 6.

    Stupak PR, Frye WO, Donovan JA. The effect of bead fusion on the energy absorption of polystyrene foam. part i: fracture toughness. J Cell Plast. 1991;27:484.CrossrefGoogle Scholar

  • 7.

    Zhai W, Kim YW, Jung DW, Park CB. Steam-chest molding of expanded polypropylene foams. 2. mechanism of interbead bonding. Ind Eng Chem Res. 2011;50:5523.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    Szwarc M. Some remarks on the p-chinodimethane molecule. Discuss Faraday Soc. 1947;2:46.CrossrefGoogle Scholar

  • 9.

    Gorham WF. A new, general synthetic method for the preparation of linear poly-p-xylylenes. J Polym Sci Part A Polym Chem. 1966;4:3027.CrossrefGoogle Scholar

  • 10.

    Tan CP, Craighead HG. Surface engineering and patterning using parylene for biological applications. Materials 2010;3:1803.Google Scholar

  • 11.

    Gazicki-Lipman M. Vapor deposition polymerization of para-Xylylene derivatives – mechanism and applications. J Vac Soc Jpn. 2007;50:601.CrossrefGoogle Scholar

  • 12.

    Szwarc M. Poly-para-xylelene: its chemistry and application in coating technology. Polym Eng Sci. 1976;16:473.CrossrefGoogle Scholar

  • 13.

    Chen HY, Elkasabi Y, Lahann J. Surface modification of confined microgeometries via vapor-deposited polymer coatings. J Am Chem Soc. 2006;128:374.CrossrefGoogle Scholar

  • 14.

    Carrow BP, Bakhru H, Wang PI, Chen Y, Senkevich JJ. Dehydrohalogenation in alpha-functionalized poly-p-xylylenes. Chem Vap Deposition 2006;12:239.CrossrefGoogle Scholar

  • 15.

    Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A. Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater. 2000;12:637.CrossrefGoogle Scholar

  • 16.

    Mitschang F, Langner M, Vieker H, Beyer A, Greiner A. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes. Macromol Rapid Commun. 2015;36:304.CrossrefWeb of ScienceGoogle Scholar

  • 17.

    Broer DJ, Luijks W. Penetration of p-xylylene vapor into small channels prior to polymerization. J Appl Polym Sci. 1981;26:2415.CrossrefGoogle Scholar

  • 18.

    Duan G, Jiang S, Jérôme V, Wendorff JH, Fathi A, Uhm J, Altstädt V, Herling M, Breu J, Freitag R, Agarwal S, Greiner A. Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions. Adv Funct Mater. 2015;25:2850.CrossrefWeb of ScienceGoogle Scholar

  • 19.

    Duan G, Jiang S, Moss T, Agarwal S, Greiner A. Ultralight open cell polymer sponges with advanced properties by PPX CVD coating. Polym Chem. 2016;7:2759.Web of ScienceCrossrefGoogle Scholar

  • 20.

    Basotect® – The versatile melamine resin foam [Internet] [cited 2016 Oct 31]. Available from: http://www.construction.basf.us/files/pdf/Basotect_brochure.pdf.

  • 21.

    Placido E, Arduini-Schuster MC, Kuhn J. Thermal properties predictive model for insulating foams. Infrared Phys Technol. 2005;46:219.CrossrefGoogle Scholar

  • 22.

    Volkert O. Process for the preparation of polyurethane rigid foams having a low thermal conductivity and their use. Patent US5096933 A.

  • 23.

    Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stabil. 2010;95:1138.Web of ScienceCrossrefGoogle Scholar

  • 24.

    Greiner A, Mang S, Schäfer O, Simon S. Poly(p-xylylene)s: synthesis, polymer analogous reactions, and perspectives on structure-property relationships. Acta Polym. 1997;48:1.CrossrefGoogle Scholar

  • 25.

    Lahann J. Vapor-based polymer coatings for potential biomedical applications. Polym Intern. 2006;55:1361.CrossrefGoogle Scholar

About the article

Received: 2016-12-27

Accepted: 2017-01-23

Published Online: 2017-03-22

Published in Print: 2017-06-27

Citation Information: e-Polymers, Volume 17, Issue 4, Pages 255–261, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2016-0329.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Michael Mader, Valérie Jérôme, Ruth Freitag, Seema Agarwal, and Andreas Greiner
Biomacromolecules, 2018
Shaohua Jiang, Seema Agarwal, and Andreas Greiner
Angewandte Chemie International Edition, 2017, Volume 56, Number 49, Page 15520
Shaohua Jiang, Seema Agarwal, and Andreas Greiner
Angewandte Chemie, 2017, Volume 129, Number 49, Page 15726

Comments (0)

Please log in or register to comment.
Log in