Jump to ContentJump to Main Navigation
Show Summary Details
In This Section


Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year

IMPACT FACTOR 2016: 0.949

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.154
Source Normalized Impact per Paper (SNIP) 2015: 0.100

See all formats and pricing
In This Section
Volume 15, Issue 6 (Nov 2015)

Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites

Jammy Rodney
  • Corresponding author
  • Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Knowledge and Technology Management Division, Sabah Economic Development and Investment Authority (SEDIA), 88873, Kota Kinabalu, Sabah, Malaysia
  • Email:
/ Japar Sahari
  • Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
/ Mohd Shah Mohd Kamal
  • Faculty of Engineering, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
/ Salit Mohd Sapuan
  • Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Published Online: 2015-07-17 | DOI: https://doi.org/10.1515/epoly-2015-0074


We aim to utilise the tea tree (Melaleuca alternifolia) fibre, a waste from the distillation process, as a reinforcement or filler in tapioca starch (TS) composites. Fabrication of tea tree fibre-reinforced TS composites was successfully developed using a casting method. The physical, thermo-chemical, and mechanical properties were tested in order to get the characterisation of the composites. From the mechanical test, the addition of 5% (v/v) tea tree fibre as a filler improved the tensile strength of the TS composites up to 34.39% in tea tree leaf-reinforced TS composites (TTL/TS), 82.80% in tea tree branch-reinforced TS composites (TTB/TS) and 203.18% in tea tree trunk-reinforced TS composites (TTT/TS). The water absorption and swelling of all tea tree fibre-reinforced composites decreased compared to those of TS composites. Most importantly, all parts of the tea tree waste, namely, the tea tree leaf, tea tree branch and tea tree trunk, have additional potential value as fibres that can act as a reinforcement in developing a green biocomposite.

Keywords: biocomposite; filler; Melaleuca alternifolia; natural fibre; reinforcement


  • 1.

    Sahari J, Sapuan SM. Natural fibre reinforced biodegradable polymer composites. Rev Adv Mater Sci. 2011;30:166–74.

  • 2.

    Sain M, Suhara P, Law S, Bouilloux A. Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos. 2005;24(2):121–30.

  • 3.

    Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZ. Comparative study on physical properties of different part of sugar palm fibre reinforced unsaturated polyester composites. Key Eng Mater. 2011;471–2:455–60.

  • 4.

    Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZ. Investigation on bending strength and stiffness of sugar palm fibre from different parts reinforced unsaturated polyester composites. Key Eng Mater. 2011;471–2:502–6.

  • 5.

    Sahari J, Sapuan SM., Ismarrubie ZN, Rahman MZ. Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres Text East Eur. 2012;20,2(91):23–6.

  • 6.

    Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater Des. 2013;49:285–9. [Crossref]

  • 7.

    Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree Arenga pinnata. Carbohydr Polym. 2013;92(2):1711–6. [Web of Science] [Crossref]

  • 8.

    Jun HS. Manufacturing method of carbon and glass fabric composites with dispersed nanofibers using vacuum-assisted resin transfer molding. e-Polymers 2014;14(5):345–52. [Web of Science]

  • 9.

    Anil A, Jose ET, George G, Joseph K. Commingled composites of polypropylene/coir-sisal yarn: effect of chemical treatments on thermal and tensile properties. e-Polymers 2015; 15(3):169–77. [Web of Science]

  • 10.

    Abba HA, Ismarrubie ZN, Sapuan MS. Review of agro waste plastic composites production. J Miner Mater Charact Eng. 2013;1:271–9.

  • 11.

    Arismendi C, Chillo S, Conte A, Del Nobile MA, Flores S, Gerschenson LN. Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT Food Sci Technol. 2013;53:290–6. [Web of Science] [Crossref]

  • 12.

    Wicaksono R, Syamsu K, Yuliasih I, Nasir M. Cellulose nanofibers from cassava bagasse: characterization and application on tapioca-film. Chem Mater Res. 2013;3(13):79–87.

  • 13.

    Espinel Villacrés RA, Flores SK, Gerschenson LN. Biopolymeric antimicrobial films: study of the influence of hydroxypropyl methylcellulose, tapioca starch and glycerol contents on physical properties. Mater Sci Eng C 2014;36:108–17. [Crossref] [Web of Science]

  • 14.

    Versino F, García MA. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crops Prod. 2014;58:305–14. [Web of Science] [Crossref]

  • 15.

    Gutierrez TJ, Tapia MS, Perez E, Fama L. Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids 2015;45:211–7. [Crossref]

  • 16.

    Southwell I, Lowe R. The tea tree genus Melaleuca. Netherlands: Harwood Academic Publishers; 1999. pp. 63–76, 81–9.

  • 17.

    Colton RT, Murtagh GJ, Drinnan J, Clarke B. Tea tree oil. Agfact P6.4.6. 2nd ed. Orange: NSW Agriculture; 2000.

  • 18.

    Wrigley JW, Fagg M. Bottlebrushes, paperbarks and tea trees and all other plants in the Leptospermum Alliance. Pymble, Australia: Angus & Robertson; 1993.

  • 19.

    Rodney J, Sahari J, Mohd Kamal Mohd Shah. Review: tea tree (Melaleuca Alternifolia) as a new material for biocomposites. J Appl Sci Agric. 2015;10(3):21–39.

  • 20.

    Richard LD. The Australian tea tree oil industry. In: IFEAT International Conference “Australia and New Zealand: Essential Oils and Aroma Chemicals – Production and Markets”, 2–6 November 2003, Sydney, Australia; 2003.

  • 21.

    Chillo S, Flores S, Mastromatteo M, Conte A, Lia Gerschenson, Del Nobile MA. Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng. 2008;88:159–68. [Crossref]

  • 22.

    ASTM D 5083. American Society for Testing Materials; 1996.

  • 23.

    Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005;23(11):22–7. [Crossref]

  • 24.

    Ray D, Rout J. Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC Press; 2005. pp. 291–345.

  • 25.

    Rowell RM. In: Prasad PN, Mark JE, Kandil SH, Kafafi ZH, editors. Science and technology of polymers and advanced materials. New York: Plenum Press; 1998. pp. 717–32.

  • 26.

    Kazayawoko M, Balatinecz JJ, Woodhans RT. Diffuse reflectance Fourier transform infrared spectra of wood fibres treated with maleated PP. J Appl Polym Sci. 1997;66:1163–73. [Crossref]

  • 27.

    Glasser WG, Kelley SS, Lignin. In: Mark HF, Kroschwits JI, editors. Encyclopedia of polymer science and engineering, 2nd ed. New York: Wiley; 1987. pp. 795–852.

  • 28.

    Himmelsbach DS, Khalili S, Akin DE. The use of FT-IR micro-spectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stem. J Sci Food Agric. 2002;82:685–96. [Crossref]

  • 29.

    Parra DF, Tadini CC, Ponce P, Lugao AB. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydr Polym. 2004;58(4):475–81. [Crossref]

  • 30.

    Dieulot JY, Skurtys O. Classification, modeling and prediction of the mechanical behavior of starch-based films. J Food Eng. 2013; 119:188–95. [Crossref]

  • 31.

    Mali S, Sakanaka LS, Yamashita F, Grossmann MV. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym. 2005;60:283–9. [Crossref]

  • 32.

    Cheng J, Zheng P, Zhao F, Ma X. The composites based on plasticized starch and carbon nanotubes. Int J Biol Macromol. 2013;59:13– 9. [Crossref] [Web of Science]

  • 33.

    Zainuddin SY, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym. 2013;92:2299–305. [Crossref] [Web of Science]

  • 34.

    Habibi Y, El-Zawawy W, Ibrahim MM, Dufresne A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibres from Egyptian agro-industrial residues. Compos Sci Technnol. 2008;68:1877–85. [Crossref] [Web of Science]

  • 35.

    Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W. HPMC reinforced with different cellulose nano-particles. Carbohydr Polym. 2011;86:1549–57. [Crossref] [Web of Science]

  • 36.

    Shash V. Handbook of polymer testing. New York: Wiley Interscience; 1983.

  • 37.

    Ke J, Yu K. Fibre-reinforced cellulose acetate composites. (http://www.odec.ca/projects/2007/yuka7k2/tensile.html) (accessed on 23 April 2014) (2007).

  • 38.

    Oksman K, Skrifvars M, Selin JF. Natural fibers as reinforcement in poly (lactic acid) composites. Compos Sci Technol. 2003;63:1317–24. [Crossref]

  • 39.

    Liu D, Zhong T, Chang PR, Li K, Wu Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol. 2010;101:2529–36. [Crossref] [Web of Science]

  • 40.

    Lu Y, Weng L, Cao X. Morphological, thermal and mechanical properties of ramie crystallites – reinforced plasticized starch biocomposites. Carbohydr. Polym. 2006;63(2):198–204.

  • 41.

    Ma X, Yu J, Jin F. Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym Int. 2004;53:1769–73.

  • 42.

    Mohanty S Verma SK, Nayak SK. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol. 2006;66:538–47. [Crossref]

  • 43.

    Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM. Characterization of sugar palm (Arenga pinnata) fibres: tensile and thermal properties. J Therm Anal Calorim. 2012;109:981–9. [Web of Science] [Crossref]

  • 44.

    El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES. Influence of fiber content on the mechanical and thermal properties of kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des. 2012;40:299–303. [Crossref]

  • 45.

    Acros Organics. Reference handbook of fine chemicals. Geel: Acros Organics; 2006.

  • 46.

    Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta 1998;319:17–25. [Crossref]

  • 47.

    Marchessault RH, Taylor MG, Fyfe CA, Veregin RP. Solid-state 13C-c.p. m.a.s. n.m.r. of starches. Carbohydr Res. 1985;144:C1–5. [Crossref]

  • 48.

    Ma X, Yu J, John FK. Studies on the properties of natural fibres-reinforced thermoplastic starch composites. Carbohydr Polym. 2005;62:19–24. [Crossref]

About the article

Corresponding author: Jammy Rodney, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia, Tel.: +60 88 320000 ext 5633, Fax: +60 88 320223, e-mail: , ; and Knowledge and Technology Management Division, Sabah Economic Development and Investment Authority (SEDIA), 88873, Kota Kinabalu, Sabah, Malaysia

Received: 2015-03-31

Accepted: 2015-05-19

Published Online: 2015-07-17

Published in Print: 2015-11-01

Citation Information: e-Polymers, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2015-0074. Export Citation

Comments (0)

Please log in or register to comment.
Log in