Jump to ContentJump to Main Navigation
Show Summary Details
More options …

e-Polymers

Editor-in-Chief: Agarwal, Seema / Greiner, Andreas

6 Issues per year


IMPACT FACTOR 2017: 1.111

CiteScore 2017: 1.02

SCImago Journal Rank (SJR) 2017: 0.335
Source Normalized Impact per Paper (SNIP) 2017: 0.430

Online
ISSN
1618-7229
See all formats and pricing
More options …
Volume 17, Issue 2

Issues

Volume 13 (2013)

Volume 12 (2012)

Volume 11 (2011)

Volume 10 (2010)

Volume 9 (2009)

Volume 8 (2008)

Volume 7 (2007)

Volume 6 (2006)

Volume 5 (2005)

Volume 4 (2004)

Volume 3 (2003)

Volume 2 (2002)

Volume 1 (2001)

Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4

Amarsingh V. Thakur / Balkrishna J. Lokhande
  • Corresponding author
  • School of Physical Sciences, Solapur University, Solapur 413 255, M.S., India, Phone: +91217-2744777, ext (184)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-15 | DOI: https://doi.org/10.1515/epoly-2016-0160

Abstract

The present work in on the successive ionic layer adsorption and reaction (SILAR) mediated synthesis and study of variations in electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes with dip time. In the aqueous route preparation, 0.1 m pyrrole, 0.1 m CuSO4 dissolved in acidified water (using 0.5 m H2SO4) and H2O2 (30 wt %) were used as initial ingredient sources. The peaks observed in the X-Ray diffraction (XRD) pattern of the electrode at =21.500 oriented along the <110> planes closely match with the peaks of Cu(OH)2 as per JCPDS data card no. 42-0638 indicating the existence of triclinic Cu(OH)2 in the hybrid. The characteristic peak at 1559 cm−1 in the Fourier transform infrared (FTIR) spectrum due to pyrrole ring vibrations confirms the existence of PPy in the hybrid. Energy-dispersive X-ray (EDX) analysis shows the occurrence of C, N, O and Cu in the electrode material which substantiates the formation of the hybrid. The scanning electron microscopy (SEM) images of electrodes with optimum dip time (20 s) in pyrrole show networks of interconnected nanostructures. The specific capacitance increases with the dip time in the source solutions. The electrode prepared with optimum dip time in pyrrole has produced the maximum values of specific capacitance (SC), specific energy (SE) and specific power (SP) as 127.04 F/g, 44.16 Wh/kg and 30 kW/kg, respectively, when analyzed in 0.5 m H2SO4. Impedance study of the electrode explains the mixed capacitive nature and the maximum values of solution resistance (Rs), charge transfer resistance (Rct) and Warburg impedance (Rw) are 1.35 Ω, 143.4 Ω and 2.05 Ω, respectively.

Keywords: energy storage; hybrids; polypyrrole; SILAR; supercapacitor; thin films

References

  • 1.

    Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface. 2006;3:741–52.Google Scholar

  • 2.

    Vidal JC, Garcia E, Castillo JR. In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system. Analytica Chimica Acta. 1999;385:213–22.Google Scholar

  • 3.

    Campbell TE, Hodgson AJ, Wallace GG. Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for rhesus (D) blood groups and rhesus (D) antibodies. Electroanalysis. 1999;11:215–22.Google Scholar

  • 4.

    Kincal D, Kamer A, Child AD, Reynold JR. Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synth Met. 1998;92:53–6.Google Scholar

  • 5.

    Kemp NT, Flanagan GU, Kaiser AB, Trodahl HJ, Chapman B, Partridge AC, Buckley RG. Temperature-dependent conductivity of conducting polymers exposed to gases. Synth Met. 1999;101:434–5.Google Scholar

  • 6.

    Stejskal J, Gilber RG. Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report). Pure Appl Chem. 2002;74:857.Google Scholar

  • 7.

    Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys. 2009;113:919–26.Google Scholar

  • 8.

    Jang MS, Song S, Shim HK. Efficient green light-emitting polymer by balanced injection of electron and hole: new electron accepting perfluorinated substituent. Polymer. 2000;41:5675–9.Google Scholar

  • 9.

    Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications. New York: Kluwer-Plenum, 1999.Google Scholar

  • 10.

    Dubal DP, Patil SV, Kim WB, Lokhande CD. Supercapacitors based on electrochemically deposited polypyrrole nanobricks. Mater Lett. 2011;65:2628–31.Google Scholar

  • 11.

    Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem. 2012;22:3044–52.Google Scholar

  • 12.

    Lei Z, Zhang J, Zhang L, Ashok Kumar N, Zhao XS. Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ Sci. 2016;9:1891–930.Google Scholar

  • 13.

    Xiao Y, Hwang J-Y, Sun Y-K. Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J. Mater Chem A. 2016;4:10379–93.Google Scholar

  • 14.

    Rudge A, Davey J, Raistrick I. Conducting polymers as active materials in electrochemical capacitors. J Power Sources. 1994;47:89–107.Google Scholar

  • 15.

    Shoa T, Madden JD, Fok CE, MirfaKhari T. Rate limits in conducting polymers. Adv Sci Tech. 2008;61:26–33.Google Scholar

  • 16.

    Wang H, Hao Q, Yang X, Lu L, Wang X. Effect of graphene oxide on the properties of its composite with polyaniline. Appl Mater Interfaces. 2010;2:821–8.Google Scholar

  • 17.

    Ambade RB, Ambade SB, Shrestha NK, Nah YC, Sung-Hwan Han SH, Lee W, Lee SH. Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun. 2013;49:2308.Google Scholar

  • 18.

    Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A. Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C. 2011;115:17612–20.Google Scholar

  • 19.

    Shinde S, Gund GS, Kumbhar VS, Patil BH, Lokhande CD. Novel chemical synthesis of polypyrrole thin film electrodes for supercapacitor application. Eur Polym J. 2013;49:3734–9.Google Scholar

  • 20.

    Shi C, Zhitomirsky I. Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors. Nanoscale Res Lett. 2010;5:518–23.Google Scholar

  • 21.

    Liew SY, Thielemans W, Walsh DA. Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J Phys Chem C. 2010;114:17926–33.Google Scholar

  • 22.

    Chen J, Feng J, Yan W. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for methylene blue. J Colloid Interface Sci. 2016;475:26–35.Google Scholar

  • 23.

    Tang PY, Hann LJ, Genc A, Galan-Miscaros J-R, Morante R, Arbiol J. Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy. 2016;22:189–201.Google Scholar

  • 24.

    Yin Z, Ding Y. CuO/polypyrrole core-shell nanocomposites as anode materials for lithium-ion batteries. Electrochemistry Comm. 2012;20:40–3.Google Scholar

  • 25.

    Kim H, Popov BN. Synthesis and characterization of MnO[sub 2]-based mixed oxides as supercapacitors. J Electrochem Soc. 2003;150:D56.Google Scholar

  • 26.

    Mckeown D, Hagans P, Carette L, Russell A, Swider K, Rolison D. Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 1999;103:4825–32.Google Scholar

  • 27.

    Khoo E, Wang J, Ma J. Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors. J Mater Chem. 2010;20:8368.Google Scholar

About the article

Received: 2016-06-14

Accepted: 2016-10-17

Published Online: 2016-11-15

Published in Print: 2017-03-01


Citation Information: e-Polymers, Volume 17, Issue 2, Pages 167–173, ISSN (Online) 1618-7229, ISSN (Print) 2197-4586, DOI: https://doi.org/10.1515/epoly-2016-0160.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. C. Ambare and B. J. Lokhande
Journal of Materials Science: Materials in Electronics, 2018
[2]
Zineb Nabti, Tarik Bordjiba, Sujittra Poorahong, Amel Boudjemaa, Ali Benayahoum, Mohamed Siaj, and Khaldoun Bachari
Journal of Materials Science: Materials in Electronics, 2018
[4]
[6]
A. V. Thakur and B. J. Lokhande
Journal of Materials Science: Materials in Electronics, 2017

Comments (0)

Please log in or register to comment.
Log in