Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Sub-micron sized saccharide fibres via electrospinning

Pablo G. T. Lepe
  • MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nick Tucker
  • Biomaterials Engineering and Chemistry, Plant and Food Research Limited, Private Bag 4704, Lincoln 7608, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lyall Simmons
  • Biomaterials Engineering and Chemistry, Plant and Food Research Limited, Private Bag 4704, Lincoln 7608, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. A. Watson
  • Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antony J. Fairbanks
  • Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark P. Staiger
  • Corresponding author
  • MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-20 | DOI: https://doi.org/10.1515/esp-2016-0001


In this work, the production of continuous submicron diameter saccharide fibres is shown to be possible using the electrospinning process. The mechanism for the formation of electrospun polymer fibres is usually attributed to the physical entanglement of long molecular chains. The ability to electrospin continuous fibre from a low molecular weight saccharides was an unexpected phenomenon. The formation of sub-micron diameter “sugar syrup” fibres was observed in situ using highspeed video. The trajectory of the electrospun saccharide fibre was observed to follow that typical of electrospun polymers. Based on initial food grade glucose syrup tests, various solutions based on combinations of syrup components, i.e. mono-, di- and tri-saccharides, were investigated to map out materials and electrospinning conditions thatwould lead to the formation of fibre. Thiswork demonstrated that sucrose exhibits the highest propensity for fibre formation during electrospinning amongst the various types of saccharide solutions studied. The possibility of electrospinning low molecular weight saccharides into sub-micron fibres has implications for the electrospinability of supramolecular polymers and other biomaterials.

Keywords: electrospinning; saccharides; carbohydrates


  • [1] Reneker D.H., Yarin A.L., Electrospinning jets and polymer nanofibers, Polymer 2008, 49(10): p. 2387-2425.Google Scholar

  • [2] Doshi J., Reneker D.H., Electrospinning Process and Applications of Electrospun Fibers, Journal of Electrostatics 1995, 35: p. 151-160.CrossrefGoogle Scholar

  • [3] Andreas Greiner J.H.W., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angewandte Chemie 2007, 46: p. 5670-5703.CrossrefGoogle Scholar

  • [4] Spivak A.F., Dzenis Y.A., Reneker D.H., A Model of Steady State Jet in the Electrospinning Process, Mechanics Research Communications 2000, 27(1): p. 37-42.CrossrefGoogle Scholar

  • [5] Martino A.D., Sittinger M., Risbud M.V., Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials 2005, 26: p. 5983-5990.CrossrefGoogle Scholar

  • [6] Ohkawa K. et al., Electrospinning of chitosan, Macromolecular Rapid Communications 2004, 25: p. 1600-1605.CrossrefGoogle Scholar

  • [7] Duan B. et al., A nanofibrous composite membrane of PLGAchitosan/ PVA prepared by electrospinning, European Polymer Journal 2006, 42(9): p. 2013-2022.CrossrefGoogle Scholar

  • [8] Ignatova M.,Manolova N., Rashkov I., Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning, European Polymer Journal 2007, 43: p. 1112-1122.Google Scholar

  • [9] Lin T. et al., Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity, Nanotechnology 2006, 17(15): p. 3718-3723.CrossrefGoogle Scholar

  • [10] Bhattarai N. et al., Electrospun chitosan-based nanofibers andtheir cellular compatibility, Biomaterials 2005, 26: p. 6176-6184.Google Scholar

  • [11] Frey M.W., Electrospinning cellulose and cellulose derivates, P olymer Reviews 2008, 48(2): p. 378-391.Google Scholar

  • [12] Han S.O. et al., Electrospinning of cellulose acetate nanofibres using a mixed solvent of acetic acid-water: Effects of solvent composition on the fiber diameter, Materials Letters 2008, 62: p. 759-762.CrossrefGoogle Scholar

  • [13] Chen L. et al., Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide, Polymer 2008, 49(5): p. 1266-1275.CrossrefGoogle Scholar

  • [14] Liu H., Hsieh Y.L., Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate, Journal of Polymer Science 2002, 40: p. 2119-2129.CrossrefGoogle Scholar

  • [15] Wang Y. et al., Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: Antibacterial properties and potential for wound dressing, International Journal of Nanomedicine 2011, 6: p. 667-676.Google Scholar

  • [16] Dong B. et al., Electrospinning of collagen nanofiber scaffolds from benign solvents, Macromolecular Rapid Communications 2009, 30: p. 539-542.CrossrefGoogle Scholar

  • [17] Chen Z. et al., Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohydrate Polymers 2008, 72: p. 410-418.CrossrefGoogle Scholar

  • [18] Hofman K. et al., Effects of the molecular format of collagen on characteristics of electrospun fibres, Journal of Materials Science 2012, 47(3): p. 1148-1155.CrossrefGoogle Scholar

  • [19] Yao C., Li X.S., Song T.Y., Electrospinning and crossfinking of Zein nanofiber mats, Journal of Applied Polymer Science 2007, 103(1): p. 380-385.Google Scholar

  • [20] Selling G.W. et al., Electrospun zein fibers using glutaraldehyde as the crosslinking reagent: Effect of time and temperature, Macromolecular Chemistry and Physics 2008, 209: p. 1003-1011.Google Scholar

  • [21] Selling G.W. et al., Impact of solvent on electrospinning of zein and analysis of resulting fibers,Macromolecular Chemistry and Physics 2007, 208: p. 1002-1010.Google Scholar

  • [22] Miyoshi T., Toyohara K., Minematsu H., Preparation of ultrafine fibrous zein membranes via electrospinning, Polymer International 2005, 54: p. 1187-1190.CrossrefGoogle Scholar

  • [23] Jiang H.L., Zhao P.C., Zhu K.J., Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method, Macromolecular Bioscience 2007, 7(4): p. 517-525.CrossrefGoogle Scholar

  • [24] Woerdeman D.L. et al., Electrospun fibers from wheat protein: Investigation of the interplay between molecular structure and the fluid dynamics of the electrospinning process, Biomacromolecules 2005, 6(2): p. 707-712.CrossrefGoogle Scholar

  • [25] Kowalczyk T. et al., Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors, Biomacromolecules 2008, 9: p. 2087-2090. CrossrefGoogle Scholar

  • [26] Wnek G.E. et al., Electrospinning of Nanofiber Fibrinogen Structures, Nano Letters 2003, 3(2): p. 213-216. CrossrefGoogle Scholar

  • [27] Dror Y. et al., Nanofibers made of globular proteins, Biomacromolecules 2008, 9: p. 2749-2754.CrossrefGoogle Scholar

  • [28] Huang Z.-M. et al., Electrospinning and mechanical characterisation of gelatin nanofibers, Polymer 2004, 45: p. 5361-5368.CrossrefGoogle Scholar

  • [29] Zhang Y. et al., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, Journal of BiomedicalMaterials Research 2004: p. 156-165.Google Scholar

  • [30] Mo X.M. et al., Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials 2004, 25: p. 1883-1890.Google Scholar

  • [31] Stijnman A.C., Bodnar I., Tromp R.H., Electrospinning of foodgrade polysaccharides, Food Hydrocolloids 2011, 25(5): p. 1393-1398.CrossrefGoogle Scholar

  • [32] Toskasa G. et al., Nanofibers based on polysaccharides from the green seaweed Ulva Rigida, Carbohydrate Polymers 2011, 84: p. 1093-1102.CrossrefGoogle Scholar

  • [33] Boland E.D. et al., Electrospinning of Biopolymers (Natural and Synthetic) for Tissue Engineering Scaffolds, Polymer Preprints 2003, 44(2): p. 92-93.Google Scholar

  • [34] Li M. et al., Electrospun protein fibers asmaterials for tissue engineering, Biomaterials 2005, 26: p. 5999-6008. [35] Schiffman J.D., Schauer C.L., A review: Electrospinning of biopolymer nanofibers and their applications, Polymer Reviews 2008, 48: p. 317-352.Google Scholar

  • [36] Duling R.R. et al., Mechanical characterization of electrospun polycaprolactone (PCL): A potential scaffold for tissue engineering, Journal of Biomechanical Engineering 2008, 130(1): p. 011006.Google Scholar

  • [37] Kidoaki S., KwonI.K.,Matsuda T., Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials 2005, 26(1): p. 37-46.CrossrefGoogle Scholar

  • [38] Lee K.Y. et al., Electrospinning of polysaccharides for regenerative medicine, Advanced Drug Delivery Reviews 2010, 61: p. 1020-1032.Google Scholar

  • [39] Garg H.G., Cowman M.K., Hales C.A., Carbohydrate chemistry, biology and medical applications, 2008, Oxford, U.K.: Elsevier, 414. Google Scholar

  • [40] Boddohi S., Kipper M.J., Engineering nanoassemblies of polysaccharides, Advanced Materials 2010, 22: p. 2998-3016.CrossrefGoogle Scholar

  • [41] Manandhar S., Vidhate S., D’Souza N., Water soluble levan polysaccharide biopolymer electrospun fibers, Carbohydrate Polymers 2009, 78: p. 794-798.CrossrefGoogle Scholar

  • [42] Hermida-Merino D. et al., Electrospun supramolecular polymer fibres, European Polymer Journal 2012, 48: p. 1249-1255.CrossrefGoogle Scholar

  • [43] Shenoy S.L. et al., Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit, Polymer 2005, 46: p. 3372-3384.CrossrefGoogle Scholar

  • [44] Shenoy S.L., Bates W.D., Wnek G., Correlations between electrospinnability and physical gelation, Polymer 2005, 46(21): p. 8990-9004.CrossrefGoogle Scholar

  • [45] Woerdeman D.L., Shenoy S., Breger D., Role of chain entanglements in the electrospinning of wheat protein-poly(vinyl alcohol) blends, Journal of Adhesion 2007, 83(8): p. 785-798.Google Scholar

  • [46] Neue U.D., HPLC columns: Theory, technology and practice, ed. M. Zoubair El Fallah, 1997, New York, NY: John Wiley and Sons, 393.Google Scholar

  • [47] Lopez Hernandez J.L. et al., High-performance liquid chromatographic determination of mono- and oligosaccharides in vegetables with evaporative light-scattering detection and refractive index detection, Journal of Chromatographic Science 1998, 36: p. 293-298.CrossrefGoogle Scholar

  • [48] Basumallick L., Hurum D., Rohrer J., Methods for determining sugars and hydroxymethylfurfural in biomass, 2011, Thermo Fisher Scientific: Sunnyvale, CA. p. 1-6.Google Scholar

  • [49] McKinley G.H., Visco-elasto-capillary thinning and break up of complex fluids. HML Report Number 05-P-04, 2005, Massachusetts Institute of Technology Cambridge, MA. p. 49.Google Scholar

  • [50] Navier C.L., Memoire sur les lois du mouvement des fluides, Memoires de la Academie des Sciences 1822, 6: p. 389-440. Google Scholar

  • [51] Baidakov V.G. et al., The van der Waals theory of capillarity and computer simulation, Colloid Journal 2001, 64(6): p. 661-670. Google Scholar

  • [52] Doyle P.S. et al., Relaxation of dilute polymer solutions following extensional flow, Journal of Non-Newtonian Fluid Mechanics 1998, 76: p. 79-110.Google Scholar

  • [53] Reneker D.H. et al., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics 2000, 87(9): p. 4531-4547.Google Scholar

  • [54] Thompson C.J. et al., Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer 2007, 48: p. 6913-6922.CrossrefGoogle Scholar

  • [55] Han T., Yarin A.L., Reneker D.H., Viscoelastic electrospun jets: Initial stresses and elongational rheometry, Polymer 2008, 49: p. 1651-1658.Google Scholar

  • [56] Lukas D. et al., Physical principles of electrospinning: Electrospinning as a nano-scale technology of the twenty-first century, Textile Progress 2009, 41(2): p. 59-140.Google Scholar

  • [57] Ramakrishna S. et al., An introduction to electrospinning and nanofibers, 2005, Singapore: World Scientific Publishing, 382.Google Scholar

  • [58] Reneker D.H., Fong H., Polymeric nanofibers, 2006,Washington D.C.: American Chemical Society, 464.Google Scholar

  • [59] Andrady A.L., Science and technology of polymer nanofibers, 2008, Hoboken, NJ: John Wiley and Sons, 420.Google Scholar

  • [60] Nie H. et al., Effects of chain conformation and entanglement on the electrospinning of pure alginate, Biomacromolecules 2008, 9: p. 1362-1365.PubMedGoogle Scholar

  • [61] Fabri D., Williams M.A.K., Halstead T.K., Water T2 relaxation in sugar solutions, Carbohydrate Research 2005, 340: p. 889-905.Google Scholar

  • [62] Arikawa T., Nagai M., Tanaka K., Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy, Chemical Physics Letters 2008, 457: p. 12-17.Google Scholar

  • [63] McKinley G.H., Dimensionless groups for understanding free surface flows of complex fluids. HML Report Number 05-P-05, 2005,Massachussetts Institute of Technology: Cambridge, MA. p. 9Google Scholar

About the article

Received: 2015-07-07

Accepted: 2015-09-14

Published Online: 2016-01-20

Published in Print: 2015-12-07

Citation Information: Electrospinning, Volume 1, Issue 1, Pages 1–9, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2016-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jonas Van Rie and Wim Thielemans
Nanoscale, 2017, Volume 9, Number 25, Page 8525

Comments (0)

Please log in or register to comment.
Log in