Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells

Michael P. Francis
  • Department of Pathology, School of Medicine at Virginia Commonwealth University, Richmond, VA 23284, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yas M. Moghaddam-White
  • Department of Pathology, School of Medicine at Virginia Commonwealth University, Richmond, VA 23284, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick C. Sachs
  • Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
  • Department of Medical Diagnostic & Translational Sciences, Old Dominion University, Norfolk, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthew J. Beckman / Stephen M. Chen / Gary L. Bowlin / Lynne W. Elmore
  • Department of Pathology, School of Medicine at Virginia Commonwealth University, Richmond, VA 23284, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shawn E. Holt
  • Corresponding author
  • Department of Natural Science, Richard Bland College of the College of William & Mary, Petersburg, VA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-04 | DOI: https://doi.org/10.1515/esp-2016-0002


The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular evidence of osteoblastogenesis. In response to osteogenic differentiation media, ASCs seeded on the Fg scaffolds exhibit elevated expression of multiple genes associated with osteoblastogenesis. Histologic stains and scanning electron microscopy demonstrate widespread mineralization within the scaffolds, as well as de novo type I collagen synthesis. Our data demonstrates that electrospun Fg nanofibers support ASC osteogenic differentiation, yet the scaffold itself does not appear to be osteoinductive. Together, ASCs and Fg recapitulate early stages of bone regeneration ex vivo and presents a prospective autologous therapeutic approach for bone repair.

Keywords: fibrinogen; adipose-derived mesenchymal stem cell; electrospinning; bone regeneration; osteoblastogenesis


  • [1] Lieberman J.R., Friedlaender G.E. (2005), Bone regeneration and repair: biology and clinical applications. Humana Press, ISBN-10: 0896038475Google Scholar

  • [2] Schindeler A., McDonald M.M., Bokko P., Little D.G. (2008), Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol 19:459-66.CrossrefGoogle Scholar

  • [3] Liebschner M.A.K., Wettergreen M.A. (2003), Optimization of Bone Scaffold Engineering for Load Bearing Applications. Topics in Tissue Engineering, Eds. Ashammakhi N, Ferretti P.Google Scholar

  • [4] Valbonesi M. (2006), Fibrin glues of human origin. Best Pract Res Clin Haematol. 19:191-203CrossrefGoogle Scholar

  • [5] Ho S.T., Hutmacher D.W., Ekaputra A.K., Hitendra D., Hui J.H. (2010), The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 16:1123-41.CrossrefGoogle Scholar

  • [6] Zimmermann R., Jakubietz R., Jakubietz M., Strasser E., Schlegel A., Wiltfang J., Eckstein R. (2001), Different preoperation method to obtain platelet components as a source of growth factors for local application. Transfusion 41:1217-1224.CrossrefGoogle Scholar

  • [7] Ho W., Tawil B., Dunn J.C.Y., Wu B.M. (2006), The behavior of human mesenchymal stem cells in 3D fibrin clots: Dependence on fibrinogen concentration and clot structure. Tissue Engineering 12:1587-1595.CrossrefGoogle Scholar

  • [8] Catelas I., Sese N., Wu B.M., Dunn J.C.Y., Helgerson S., Tawil B. (2006), Human Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation in Fibrin Gels in Vitro. Tissue Engineering 12:2385-2396.Google Scholar

  • [9] Bensaïd W., Triffitt J.T., Blanchat C., Oudina K., Sedel L., Petite H. (2003), A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497-502.CrossrefGoogle Scholar

  • [10] Isogai N., LandisW.J., Mori R., Gotoh Y., Gerstenfeld L., Upton J., Vacanti J. (2000), Experimental Use of Fibrin Glue to Induce Site- Directed Osteogenesis from Cultured Periosteal Cells. Plast Reconstr Surg 105:953-63.Google Scholar

  • [11] Lendeckel S., Jödicke A., Christophis P., Heidinger K., Wolff J., Fraser J.K., Hedrick M.H., Berthold L., Howaldt H.P. (2004), Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomax Surg 32:370-3.Google Scholar

  • [12] Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. (2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211-28.Google Scholar

  • [13] Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. (2002), Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell 13:4279-95.CrossrefGoogle Scholar

  • [14] Katz A.J., Tholpady A., Tholpady S.S., Shang H., Ogle R.C. (2005), Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412-23.CrossrefGoogle Scholar

  • [15] Izadpanah R., Trygg C., Patel B., Kriedt C., Dufour J., Gimble J.M., Bunnell B.A. (2006), Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285-97.Google Scholar

  • [16] Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. (2006), Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294-301.Google Scholar

  • [17] Chamberlain G., Fox J., Ashton B., Middleton J. (2007), Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739-49.CrossrefWeb of ScienceGoogle Scholar

  • [18] Wang M., Crisostomo P.R., Herring C., Meldrum K.K., Meldrum D.R. (2006), Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Intgr Comp Physiol 291:R880-4.Google Scholar

  • [19] Abedin M., Tintut Y., Demer L.L. (2004), Mesenchymal stem cells and the artery wall. Circ Res 95:671-676.Google Scholar

  • [20] Amos P.J., Shang H., Bailey A.M., Taylor A., Katz A.J., Peirce S.M. (2008), IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26:2682-2690.Web of ScienceCrossrefGoogle Scholar

  • [21] Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P.N., Traas J., Schugar R., Deasy B.M., Badylak S., Buhring H.J., Giacobino J.P., Lazzari L., Huard J., Péault B. (2008), A perivascular origin for mesenchymal stem cells inmultiple human organs. Cell Stem Cell 3:301-313.CrossrefGoogle Scholar

  • [22] Traktuev D.O., Merfeld-Clauss S., Li J., Kolonin M., Arap W., Pasqualini R., Johnstone B.H., March K.L. (2008), A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77-85.CrossrefWeb of ScienceGoogle Scholar

  • [23] Zannettino A.C., Paton S., Arthur A., Khor F., Itescu S., Gimble J.M., Gronthos S. (2008), Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413-421.Web of ScienceGoogle Scholar

  • [24] Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. (2007), Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413-33.Web of ScienceGoogle Scholar

  • [25] Boland E.D., Coleman B.D., Barnes C.P., Simpson D.G., Wnek G.E., Bowlin G.L. (2005), Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115-23.Google Scholar

  • [26] Venugopal J., Low S., Choon A.T., Kumar T.S.S., Ramakrishna R. (2008), Mineralization of osteoblasts with electrospun collagen/ hydroxyapatite nanofibers. J Mater Sci Mater Med 19:2039-46.Web of ScienceGoogle Scholar

  • [27] Wnek G.E., Carr M., Simpson D.G., Bowlin G.L. (2003), Electrospinning of nanofiber fibrinogen structures, Nano Lett 3:213-216.CrossrefGoogle Scholar

  • [28] Francis M.P., Sachs P.C., Madurantakam P.A., Sell S.A., Elmore L.W., Bowlin G.L., Holt S.E. (2012), Electrospinning Adipose Tissue-Derived ExtracellularMatrix for Adipose Stem Cell Culture. J Biomed Mat Res Part A 100:1716-24.Google Scholar

  • [29] Mosesson M.W. (2005), Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894-904.Google Scholar

  • [30] Giannini G., Mauro V., Agostino T., Gianfranco B. (2004), Use of autologous fibrin platelet glue and bone fragments in maxillofacial surgery. Transfus Apheresis Sci 30:139-144.CrossrefGoogle Scholar

  • [31] McManus M.C., Boland E.D., Simpson D.G., Barnes C.P., Bowlin G.L. (2007), Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mat Res A 81:299-309.Google Scholar

  • [32] McManus M., Boland E., Sell S., Bowen W., Koo H., Simpson D.G., Bowlin G.L. (2007), Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mat 2:257-262.Google Scholar

  • [33] McManus M.C., Boland E.D., Koo H.P., Barnes C.P., Pawlowski K.J., Wnek G.E., Simpson D.G., Bowlin G.L. (2006), Mechanical properties of electrospun fibrinogen structures. Acta Biomat 2:19-28.Google Scholar

  • [34] Francis M.P., Sachs P.C., Elmore L.W., Holt S.E. (2010), Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6:10-14.Web of ScienceGoogle Scholar

  • [35] Sachs P.C., Francis M.P., Brumelle J., Rao R.R., Elmore L.W., Holt S.E. (2012), Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res 349:505-15.Web of ScienceGoogle Scholar

  • [36] Friedenstein A.J., Deriglasova U.F., Kulagina N.N., Panasuk A.F., Rudakowa S.F., Luria E.A., Ruadkow I.A. (1974), Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83-92.Google Scholar

  • [37] Sell S.A., Francis M.P., Garg K., McClure M.J., Simpson D.G., Bowlin G.L. (2008), Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed Mater 3:045001 (11pp). Web of ScienceGoogle Scholar

  • [38] Sefcik L.S., Neal R.A., Kaszuba S.N., Parker A.M., Katz A.J., Ogle R.C., Botchwey E.A. (2008), Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. J Tissue Eng Regen Med 2:210-20.CrossrefWeb of ScienceGoogle Scholar

  • [39] Hotary K.B., Yana I., Sabeh F., Li X.Y., Holmbeck K., Birkedal- Hansen H., Allen E.D., Hiraoka N., Weiss S.J. (2002), Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195:295-308.Google Scholar

  • [40] Wutticharoenmongkol P., Pavasant P., Supaphol P. (2007), Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules 8:2602-10.Google Scholar

  • [41] Kim H.W., Yu H.S., Lee H.H. (2008), Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 87:25-32.Web of ScienceGoogle Scholar

  • [42] McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S.(2004), Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Devel Cell 6:483-495.Google Scholar

  • [43] Franceschi R.T., Iyer B.S. (1992), Relationship between collagen synthesis and expression of the osteoblast phenotype in Mc3t3- E1 cells. J Bone Miner Res 7:235-246.Google Scholar

  • [44] Shih Y.R., Chen C.N., Tsai S.W., Wang Y.J., Lee O.K. (2006), Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391-2397.CrossrefGoogle Scholar

  • [45] Mavis B., Demirtaş T.T., Gümüşderelioğlu M., Gündüz G., Colak U. (2009), Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomat 5:3098-3111.Web of ScienceGoogle Scholar

  • [46] McCullen S.D., Zhu Y., Bernacki S.H., Narayan R.J., Pourdeyhimi ., Gorga R.E., Loboa E.G. (2009), Electrospun composite poly(Llactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater 4:035002 (9pp).Web of ScienceGoogle Scholar

About the article

Received: 2015-06-12

Revised: 2016-01-08

Accepted: 2016-01-13

Published Online: 2016-04-04

Published in Print: 2016-04-04

Citation Information: Electrospinning, Volume 1, Issue 1, Pages 10–19, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2016-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Monireh Kouhi, Venugopal Jayarama Reddy, Mohammadhossein Fathi, Morteza Shamanian, Afsaneh Valipouri, and Seeram Ramakrishna
Journal of Biomedical Materials Research Part A, 2019, Volume 107, Number 6, Page 1154
Seth Polk, Nardos Sori, Nick Thayer, Nathan Kemper, Yas Maghdouri-White, Anna A Bulysheva, and Michael P Francis
Biofabrication, 2018, Volume 10, Number 4, Page 045004
Ágata Paim, Isabel C. Tessaro, Nilo S. M. Cardozo, and Patricia Pranke
Journal of Biological Physics, 2018

Comments (0)

Please log in or register to comment.
Log in