Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Electrospinning

Ed. by Uyar, Tamer

Open Access
Online
ISSN
2391-7407
See all formats and pricing
More options …

A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size

Kevin P. Feltz / Emily A. Growney Kalaf / Chengpeng Chen / R. Scott Martin / Scott A. Sell
Published Online: 2017-09-02 | DOI: https://doi.org/10.1515/esp-2017-0002

Abstract

Electrospinning has been widely accepted for several decades by the tissue engineering and regenerative medicine community as a technique for nanofiber production. Owing to the inherent flexibility of the electrospinning process, a number of techniques can be easily implemented to control fiber deposition (i.e. electric/ magnetic field manipulation, use of alternating current, or air-based fiber focusing) and/or porosity (i.e. air impedance, sacrificial porogen/sacrificial fiber incorporation, cryo-electrospinning, or alternative techniques). The purpose of this review is to highlight some of the recent work using these techniques to create electrospun scaffolds appropriate for mimicking the structure of the native extracellular matrix, and to enhance the applicability of advanced electrospinning techniques in the field of tissue engineering.

Keywords: Electrospinning; Nanofiber; Tissue engineering; Porosity; Patterning

References

  • [1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Cell junctions, cell adhesion, and the extracellular matrix, (2002).Google Scholar

  • [2] R.F. Diegelmann, M.C. Evans, Wound healing: an overview of acute, fibrotic and delayed healing, Front Biosci 9(1) (2004) 283-289.Google Scholar

  • [3] F. Rosso, A. Giordano, M. Barbarisi, A. Barbarisi, From cell-ECM interactions to tissue engineering, Journal of cellular physiology 199(2) (2004) 174-180.Google Scholar

  • [4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The extracellular matrix of animals, (2002). Google Scholar

  • [5] M.F. Goody, C.A. Henry, Dynamic interactions between cells and their extracellular matrix mediate embryonic development, Mol Reprod Dev 77(6) (2010) 475-88.Google Scholar

  • [6] F.M. Watt, H. Fujiwara, Cell-extracellular matrix interactions in normal and diseased skin, Cold Spring Harb Perspect Biol 3(4) (2011).Google Scholar

  • [7] E. Boland, P. Espy, G. Bowlin, Tissue Engineering Scaffolds, Encyclopedia of Biomaterials and Biomedical Engineering, Second Edition (Online Version), CRC Press2008, pp. 2828-2837.Google Scholar

  • [8] X. Wen, D. Shi, N. Zhang, Applications of nanotechnology in tissue engineering, Handbook of nanostructured biomaterials and their applications in nanobiotechnology 2 (2005) 393-414.Google Scholar

  • [9] S. Partridge, H. Davis, The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin, Biochemical Journal 61(1) (1955) 21.Google Scholar

  • [10] W.F. Daamen, J. Veerkamp, J. Van Hest, T. Van Kuppevelt, Elastin as a biomaterial for tissue engineering, Biomaterials 28(30) (2007) 4378-4398.Google Scholar

  • [11] G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anteriorcruciate ligaments, Biomaterials 23(20) (2002) 4131-4141. Google Scholar

  • [12] H. Liu, H. Fan, Y. Wang, S.L. Toh, J.C. Goh, The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering, Biomaterials 29(6) (2008) 662-674.Google Scholar

  • [13] Y.K. Seo, G.M. Choi, S.Y. Kwon, H.S. Lee, Y.S. Park, K.Y. Song, Y.J. Kim, J.K. Park, The biocompatibility of silk scaffold for tissue engineered ligaments, Key Engineering Materials, Trans Tech Publ, 2007, pp. 73-76.Google Scholar

  • [14] S. Toh, T. Teh, S. Vallaya, J. Goh, Novel silk scaffolds for ligament tissue engineering applications, Key Engineering Materials, Trans Tech Publ, 2006, pp. 727-730.Google Scholar

  • [15] H. Yoshimoto, Y. Shin, H. Terai, J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials 24(12) (2003) 2077-2082.Google Scholar

  • [16] K. Fujihara, M. Kotaki, S. Ramakrishna, Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers, Biomaterials 26(19) (2005) 4139-4147.Google Scholar

  • [17] S.A. Sell, P.S. Wolfe, K. Garg, J.M. McCool, I.A. Rodriguez, G.L. Bowlin, The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues, Polymers 2(4) (2010) 522.Google Scholar

  • [18] M.D. Shoulders, R.T. Raines, Collagen structure and stability, Annual review of biochemistry 78 (2009) 929.Google Scholar

  • [19] B.O. Palsson, S.N. Bhatia, Tissue engineering, 2004, Pearson Education, Upper Saddle River, New Jersey.Google Scholar

  • [20] M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, P.I. Lelkes, Electrospun protein fibers as matrices for tissue engineering, Biomaterials 26(30) (2005) 5999-6008.Google Scholar

  • [21] H.P. Erickson, N. Carrell, J. McDONAGH, Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand, The Journal of cell biology 91(3) (1981) 673-678.Google Scholar

  • [22] R.A. Neal, S.G. McClugage III, M.C. Link, L.S. Sefcik, R.C. Ogle, E.A. Botchwey, Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes, Tissue Engineering Part C: Methods 15(1) (2008) 11-21.Google Scholar

  • [23] F.M. Watt, W.T.S. Huck, Role of the extracellular matrix in regulating stem cell fate, Nat Rev Mol Cell Biol 14(8) (2013) 467-473.Google Scholar

  • [24] X. Xia, X.-h. Shen, M. Chen, Y.-q. Xiao, Y. He, Connective tissue diseases, (1990).Google Scholar

  • [25] M.A. Loots, E.N. Lamme, J. Zeegelaar, J.R. Mekkes, J.D. Bos, E. Middelkoop, Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds, Journal of Investigative Dermatology 111(5) (1998) 850-857.Google Scholar

  • [26] M. Marsden, D.W. DeSimone, Integrin-ECM Interactions Regulate Cadherin-Dependent Cell Adhesion and Are Required for Convergent Extension in <em>Xenopus</em>, Current Biology 13(14) 1182-1191.Google Scholar

  • [27] D. Loessner, K.S. Stok, M.P. Lutolf, D.W. Hutmacher, J.A.Clements, S.C. Rizzi, Bioengineered 3D platform to explore cell- ECM interactions and drug resistance of epithelial ovarian cancer cells, Biomaterials 31(32) (2010) 8494-8506.Google Scholar

  • [28] S. Ramakrishna, An Introduction to Electrospinning and Nanofibers, World Scientific2005.Google Scholar

  • [29] A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F Faupel, Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects, Advances in colloid and interface science 170(1) (2012) 2-27.Google Scholar

  • [30] J.J. Norman, T.A. Desai, Methods for fabrication of nanoscale topography for tissue engineering scaffolds, Annals of biomedical engineering 34(1) (2006) 89-101.Google Scholar

  • [31] F. Anton, Process and apparatus for preparing artificial threads, Google Patents, 1934. Google Scholar

  • [32] S. Sell, C. Barnes, M. Smith, M. McClure, P. Madurantakam, J. Grant, M. McManus, G. Bowlin, Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers, Polymer International 56(11) (2007) 1349-1360.Google Scholar

  • [33] W. Liu, S. Thomopoulos, Y. Xia, Electrospun nanofibers for regenerative medicine, Advanced healthcare materials 1(1) (2012) 10-25.Google Scholar

  • [34] E.D. Boland, T.A. Telemeco, D.G. Simpson, G.E. Wnek, G.L. Bowlin, Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly (glycolic acid) for tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 71(1) (2004) 144-152.Google Scholar

  • [35] L. Kolacna, J. Bakesova, F. Varga, E. Kostakova, L. Plánka, A. Necas, D. Lukas, E. Amler, V. Pelouch, Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix, Physiological Research 56 (2007) S51.Google Scholar

  • [36] M. Schindler, I. Ahmed, J. Kamal, A. Nur-E-Kamal, T.H. Grafe, H.Y. Chung, S. Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture, Biomaterials 26(28) (2005) 5624-5631.Google Scholar

  • [37] T. Telemeco, C. Ayres, G. Bowlin, G. Wnek, E. Boland, N. Cohen, C. Baumgarten, J. Mathews, D. Simpson, Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning, Acta biomaterialia 1(4) (2005) 377-385.Google Scholar

  • [38] J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Müeller, L.G. Griffith, Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue engineering 7(5) (2001) 557-572.Google Scholar

  • [39] P. Zahedi, I. Rezaeian, S.O. Ranaei-Siadat, S.H. Jafari, P. Supaphol, A review on wound dressingswith an emphasis on electrospun nanofibrous polymeric bandages, Polymers for Advanced Technologies 21(2) (2010) 77-95.Google Scholar

  • [40] D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, Journal of Biomedical Materials Research Part B: Applied Biomaterials 70(2) (2004) 286-296.Google Scholar

  • [41] S. Liao, B. Li, Z.Ma, H. Wei, C. Chan, S. Ramakrishna, Biomimeticelectrospun nanofibers for tissue regeneration, BiomedicalMaterials 1(3) (2006) R45.Google Scholar

  • [42] E. Chong, T. Phan, I. Lim, Y. Zhang, B. Bay, S. Ramakrishna, C.Lim, Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution, Acta biomaterialia 3(3) (2007) 321-330.Google Scholar

  • [43] H. Powell, S. Boyce, Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes, Journal of Biomedical Materials Research Part A 84(4) (2008) 1078-1086.Google Scholar

  • [44] B.J. Rybarczyk, S.O. Lawrence, P.J. Simpson-Haidaris, Matrixfibrinogenenhances wound closure by increasing both cell proliferation and migration, Blood 102(12) (2003) 4035-4043.Google Scholar

  • [45] G.E. Wnek, M.E. Carr, D.G. Simpson, G.L. Bowlin, Electrospinning of nanofiber fibrinogen structures, Nano Letters 3(2) (2003) 213-216.Google Scholar

  • [46] M.J. Smith, K.L. White, D.C. Smith, G.L. Bowlin, In vitro evaluations of innate and acquired immune responses to electrospun polydioxanone-elastin blends, Biomaterials 30(2) (2009) 149-159.Google Scholar

  • [47] T. Bini, S. Gao, S. Wang, S. Ramakrishna, Poly (l-lactideco- glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study, Journal of materials science 41(19) (2006) 6453-6459.Google Scholar

  • [48] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, S. Ramakrishna, Electrospun poly ("- caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials 29(34) (2008) 4532-4539.Google Scholar

  • [49] E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-_-caprolactone blend, Biomaterials 28(19) (2007) 3012-3025.Google Scholar

  • [50] B.S. Jha, R.J. Colello, J.R. Bowman, S.A. Sell, K.D. Lee, J.W. Bigbee, G.L. Bowlin, W.N. Chow, B.E. Mathern, D.G. Simpson, Two pole air gap electrospinning: fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction, Acta biomaterialia 7(1) (2011) 203-215.Google Scholar

  • [51] C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Advanced Drug Delivery Reviews 59(14) (2007) 1413-1433.Google Scholar

  • [52] M. Browning, D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, T. Fossum,Multilayer vascular grafts based on collagen-mimetic proteins, Acta biomaterialia 8(3) (2012) 1010-1021.Google Scholar

  • [53] W. He, Z. Ma, W.E. Teo, Y.X. Dong, P.A. Robless, T.C. Lim, S. Ramakrishna, Tubular nanofiber scaffolds for tissue engineeredsmall-diameter vascular grafts, Journal of biomedical materials research Part A 90(1) (2009) 205-216.Google Scholar

  • [54] C. Huang, R. Chen, Q. Ke, Y. Morsi, K. Zhang, X. Mo, Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts, Colloids and Surfaces B: Biointerfaces 82(2) (2011) 307-315.Google Scholar

  • [55] M. Sato, Y. Nakazawa, R. Takahashi, K. Tanaka, M. Sata, D. Aytemiz, T. Asakura, Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating,Materials Letters 64(16) (2010) 1786-1788.Google Scholar

  • [56] V. Thomas, T. Donahoe, E. Nyairo, D.R. Dean, Y.K. Vohra, Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations, Acta biomaterialia 7(5) (2011) 2070-2079.Google Scholar

  • [57] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts, Acta biomaterialia 10(1) (2014) 11-25.Google Scholar

  • [58] S.A. Sell, M.J. McClure, C.P. Barnes, D.C. Knapp, B.H. Walpoth, D.G. Simpson, G.L. Bowlin, Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts, Biomedical Materials 1(2) (2006) 72.Google Scholar

  • [59] S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Advanced Drug Delivery Reviews 61(12) (2009) 1007-1019.Google Scholar

  • [60] K.A. McKenna, M.T. Hinds, R.C. Sarao, P.-C. Wu, C.L. Maslen, R.W. Glanville, D. Babcock, K.W. Gregory, Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials, Acta biomaterialia 8(1) (2012) 225-233.Google Scholar

  • [61] S.G. Wise, M.J. Byrom, A. Waterhouse, P.G. Bannon, M.K. Ng, A.S. Weiss, A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties, Acta biomaterialia 7(1) (2011) 295-303.Google Scholar

  • [62] L. Soletti, Y. Hong, J. Guan, J.J. Stankus, M.S. El-Kurdi,W.R.Wagner, D.A. Vorp, A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts, Acta biomaterialia 6(1) (2010) 110-122.Google Scholar

  • [63] S.J. Lee, J. Liu, S.H. Oh, S. Soker, A. Atala, J.J. Yoo, Development of a composite vascular scaffolding system that withstands physiological vascular conditions, Biomaterials 29(19) (2008) 2891-2898.Google Scholar

  • [64] S. Kidoaki, I.K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques, Biomaterials 26(1) (2005) 37-46.Google Scholar

  • [65] J.D. Stitzel, K.J. Pawlowski, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold, Journal of biomaterials applications 16(1) (2001) 22-33.Google Scholar

  • [66] Y. Zhu, Y. Cao, J. Pan, Y. Liu, Macro-alignment of electrospun fibers for vascular tissue engineering, Journal of BiomedicalMaterials Research Part B: Applied Biomaterials 92(2) (2010) 508-516. Google Scholar

  • [67] M. Shin, O. Ishii, T. Sueda, J. Vacanti, Contractile cardiac grafts using a novel nanofibrous mesh, Biomaterials 25(17) (2004) 3717-3723.Google Scholar

  • [68] X. Zong, H. Bien, C.-Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, E. Entcheva, Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials 26(26) (2005) 5330-5338.Google Scholar

  • [69] H. Zhang, M. Edirisinghe, Electrospinning zirconia fiber from a suspension, Journal of the American Ceramic Society 89(6) (2006) 1870-1875.Google Scholar

  • [70] K. Sisson, C. Zhang, M.C. Farach-Carson, D.B. Chase, J.F. Rabolt, Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin, Journal of biomedical materials research Part A 94(4) (2010) 1312-1320.Google Scholar

  • [71] M.P. Francis, Y.M. Moghaddam-White, P.C. Sachs, M.J. Beckman, S.M. Chen, G.L. Bowlin, L.W. Elmore, S.E. Holt, Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells, Electrospinning 1(1) (2016) 10-19.Google Scholar

  • [72] C. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds formusculoskeletal tissue engineering, Journal of biomedical materials research 55(2) (2001) 141-150.Google Scholar

  • [73] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H.Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials 24(3) (2003) 401-416.Google Scholar

  • [74] A.J. Almarza, K.A. Athanasiou, Design characteristics for the tissue engineering of cartilaginous tissues, Annals of biomedical engineering 32(1) (2004) 2-17.Google Scholar

  • [75] C.P. Barnes, C.W. Pemble IV, D.D. Brand, D.G. Simpson, G.L. Bowlin, Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol, Tissue engineering 13(7) (2007) 1593-1605.Google Scholar

  • [76] A. Alessandrino, B. Marelli, C. Arosio, S. Fare, M. Tanzi, G. Freddi, Electrospun silk fibroin mats for tissue engineering, Engineering in life sciences 8(3) (2008) 219-225.Google Scholar

  • [77] C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D, L-lactic-co-glycolic acid) meshes, Biomaterials 27(33) (2006) 5681-5688.Google Scholar

  • [78] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, IEEE, 1993, pp. 1698-1703.Google Scholar

  • [79] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7(3) (1996) 216. Google Scholar

  • [80] G.H. Kim, Electrospinning process using field-controllable electrodes, Journal of Polymer Science Part B: Polymer Physics 44(10) (2006) 1426-1433.Google Scholar

  • [81] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42(1) (2001) 261-272.Google Scholar

  • [82] C.J. Buchko, L.C. Chen, Y. Shen, D.C.Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer 40(26) (1999) 7397-7407.Google Scholar

  • [83] L. Larrondo, R. St John Manley, Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties, Journal of Polymer Science: Polymer Physics Edition 19(6) (1981) 909-920.Google Scholar

  • [84] Z. Li, C. Wang, One-dimensional nanostructures: electrospinning technique and unique nanofibers, Springer2013.Google Scholar

  • [85] C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter,Macromolecular Chemistry and Physics 205(17) (2004) 2327-2338.Google Scholar

  • [86] V. Morozov, T. Morozova, N. Kallenbach, Atomic force microscopy of structures produced by electrospraying polymer solutions, International Journal of Mass Spectrometry 178(3) (1998) 143-159.Google Scholar

  • [87] T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electrospinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers, European Polymer Journal 41(3) (2005) 409-421.Google Scholar

  • [88] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane fibers, Polymer 43(11) (2002) 3303-3309. Google Scholar

  • [89] H. Fong, I. Chun, D. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40(16) (1999) 4585-4592.Google Scholar

  • [90] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 35(22) (2002) 8456-8466.Google Scholar

  • [91] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release 92(3) (2003) 227-231.Google Scholar

  • [92] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, The effects of solutionproperties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers, Polymer 45(9) (2004) 2959-2966.Google Scholar

  • [93] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43(16) (2002) 4403-4412.Google Scholar

  • [94] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, Study on morphology of electrospun poly (vinyl alcohol) mats, European polymer journal 41(3) (2005) 423-432.Google Scholar

  • [95] T. Wang, S. Kumar, Electrospinning of polyacrylonitrile nanofibers, Journal of Applied Polymer Science 102(2) (2006) 1023-1029.Google Scholar

  • [96] M.M. Arras, C. Grasl, H. Bergmeister, H. Schima, Electrospinning of aligned fiberswith adjustable orientation using auxiliary electrodes, Science and technology of advancedmaterials 13(3) (2012) 035008.Google Scholar

  • [97] L.M. Bellan, H. Craighead, Control of an electrospinning jet using electric focusing and jet-steering fields, Journal of Vacuum Science & Technology B 24(6) (2006) 3179-3183.Google Scholar

  • [98] Z. Ahmad, M. Nangrejo, M. Rasekh, E. Stride, M. Edirisinghe, Novel electrically driven direct-writing methods with managed control on in-situ shape and encapsulation polymer forming, International Journal of Material Forming 6(2) (2013) 281-288.Google Scholar

  • [99] A. Theron, E. Zussman, A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology 12(3) (2001) 384.Google Scholar

  • [100] Y.K. Fuh, S.Z. Chen, Z.Y. He, Direct-write, highly aligned chitosan-poly (ethylene oxide) nanofiber patterns for cell morphology and spreading control, Nanoscale research letters 8(1) (2013) 1-9.Google Scholar

  • [101] D. Cho, L. Matlock-Colangelo, C. Xiang, P.J. Asiello, A.J. Baeumner, M.W. Frey, Electrospun nanofibers for microfluidic analytical systems, Polymer 52(15) (2011) 3413-3421.Google Scholar

  • [102] J.-H. He, Y. Wu, N. Pang, A mathematical model for preparation by AC-Electrospinning process, International Journal of Nonlinear Sciences and Numerical Simulation 6(3) (2005) 243-248.Google Scholar

  • [103] S. Jana, M. Zhang, Fabrication of 3D aligned nanofibrous tubes by direct electrospinning, Journal ofMaterials Chemistry B 1(20) (2013) 2575-2581.Google Scholar

  • [104] R. Kessick, J. Fenn, G. Tepper, The use of AC potentials in electrospraying and electrospinning processes, Polymer 45(9) (2004) 2981-2984.Google Scholar

  • [105] J. Lee, S.Y. Lee, J. Jang, Y.H. Jeong, D.-W. Cho, Fabrication of patterned nanofibrous mats using direct-write electrospinning, Langmuir 28(18) (2012) 7267-7275. Google Scholar

  • [106] S. Maheshwari, H.C. Chang, Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning, Advanced Materials 21(3) (2009) 349-354.Google Scholar

  • [107] F.O. Ochanda, M.A. Samaha, H.V. Tafreshi, G.C. Tepper, M. Gadel- Hak, Fabrication of superhydrophobic fiber coatings by DCbiased AC-electrospinning, Journal of Applied Polymer Science 123(2) (2012) 1112-1119.Google Scholar

  • [108] S. Sarkar, S. Deevi, G. Tepper, Biased AC electrospinning of aligned polymer nanofibers,Macromolecular rapid communications 28(9) (2007) 1034-1039.Google Scholar

  • [109] D. Wang, S. Jayasinghe, M. Edirisinghe, Instrument for electrohydrodynamic print-patterning three-dimensional complex structures, Review of scientific instruments 76(7) (2005) 075105.Google Scholar

  • [110] F. Fang, X. Chen, Z. Du, Z. Zhu, X. Chen, H. Wang, P. Wu, Controllable Direct-Writing of Serpentine Micro/Nano Structures via Low Voltage Electrospinning, Polymers 7(8) (2015) 1577-1586.Google Scholar

  • [111] Y. Liu, X. Zhang, Y. Xia, H. Yang, Magnetic Field-Assisted Electrospinning of Aligned Straight andWavy Polymeric Nanofibers, Advanced materials (Deerfield Beach, Fla.) 22(22) (2010) 2454-2457.Google Scholar

  • [112] D. Yang, B. Lu, Y. Zhao, X. Jiang, Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning, Advanced Materials 19(21) (2007) 3702-3706.Google Scholar

  • [113] Y. Yang, Z. Jia, J. Liu, Q. Li, L. Hou, L. Wang, Z. Guan, Effect of electric field distribution uniformity on electrospinning, Journal of applied physics 103(10) (2008) 104307.Google Scholar

  • [114] W. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17(14) (2006) R89.Google Scholar

  • [115] C. Chang, V.H. Tran, J.Wang, Y.-K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion eflciency, Nano letters 10(2) (2010) 726-731.Google Scholar

  • [116] P.D. Dalton, D. Klee, M. Möller, Electrospinning with dual collection rings, Polymer 46(3) (2005) 611-614.Google Scholar

  • [117] S. Sell, M. McClure, C. Ayres, D. Simpson, G. Bowlin, Preliminary investigation of airgap electrospun silk-fibroin-based structures for ligament analogue engineering, Journal of Biomaterials Science, Polymer Edition 22(10) (2011) 1253-1273.Google Scholar

  • [118] C. Tafur,MacIssac, D., Right-Hand Rules: A Guide to finding the Direction of the Magnetic Force. 2016 (accessed 08/02/2016.).Google Scholar

  • [119] G. Müller, Magnetic Field on the Axis of a Solenoid. <http://www.phys.uri.edu/gerhard/PHY204/tsl215.pdf>, 2008 (accessed 02/02/2016.).Google Scholar

  • [120] P.M. Fishbane, S.G. Gasiorowicz, S.T. Thornton, Physics for scientists and engineers, Prentice-Hall1993.Google Scholar

  • [121] K. Muramatsu, T. Okitsu, H. Fujitsu, F. Shimanoe, Method of nonlinear magnetic field analysis taking into account eddy current in laminated core, IEEE Transactions on Magnetics 40(2) (2004) 896-899. Google Scholar

  • [122] C.A. D, L. Edward, Z.O. J, Television camera including an image isocon tube, Google Patents, 1969.Google Scholar

  • [123] H. Hisayuki, K. Hirokazu, M. Michiyoshi, T. Hifumi, Scanning electron microscope, Google Patents, 1969.Google Scholar

  • [124] C. Chen, B.T. Mehl, S.A. Sell, R.S. Martin, Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices, Analyst 141(18) (2016) 5311-5320.Google Scholar

  • [125] G.L. Bowlin, Enhanced porosity without compromising structural integrity: the nemesis of electrospun scaffolding, Journal of Tissue Science & Engineering (2011).Google Scholar

  • [126] M.J. McClure, P.S. Wolfe, D.G. Simpson, S.A. Sell, G.L. Bowlin, The use of air-flow impedance to control fiber deposition patterns during electrospinning, Biomaterials 33(3) (2012) 771-9.Google Scholar

  • [127] S. Selders Gretchen, E. Fetz Allison, L. Speer Shannon, L. Bowlin Gary, Fabrication and characterization of air-impedance electrospun polydioxanone templates, Electrospinning, 2016, p. 20.Google Scholar

  • [128] A. Yin, J. Li, G.L. Bowlin, D. Li, I.A. Rodriguez, J. Wang, T. Wu, H.A. Ei-Hamshary, S.S. Al-Deyab, X. Mo, Fabrication of cell penetration enhanced poly (l-lactic acid-co-varepsiloncaprolactone)/ silk vascular scaffolds utilizing air-impedance electrospinning, Colloids and surfaces. B, Biointerfaces 120 (2014) 47-54.Google Scholar

  • [129] S.W. Suh, J.Y. Shin, J. Kim, C.H. Beak, D.I. Kim, H. Kim, S.S. Jeon, I.W. Choo, Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique, ASAIO J 48(5) (2002) 460-4.Google Scholar

  • [130] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity, Tissue engineering 13(9) (2007) 2249-57.Google Scholar

  • [131] T.G. Kim, H.J. Chung, T.G. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta biomaterialia 4(6) (2008) 1611-9.Google Scholar

  • [132] Y.H. Lee, J.H. Lee, I.G. An, C. Kim, D.S. Lee, Y.K. Lee, J.D. Nam, Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds, Biomaterials 26(16) (2005) 3165-72.Google Scholar

  • [133] M.C. Phipps, W.C. Clem, J.M. Grunda, G.A. Clines, S.L. Bellis, Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration, Biomaterials 33(2) (2012) 524-34.Google Scholar

  • [134] B.M. Baker, R.P. Shah, A.M. Silverstein, J.L. Esterhai, J.A. Burdick, R.L.Mauck, Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation, Proceedings of the National Academy of Sciences of the United States of America 109(35) (2012) 14176-81.Google Scholar

  • [135] L.C. Ionescu, G.C. Lee, B.J. Sennett, J.A. Burdick, R.L.Mauck, An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering, Biomaterials 31(14) (2010) 4113-20.Google Scholar

  • [136] K. Wang, M. Xu, M. Zhu, H. Su, H. Wang, D. Kong, L. Wang, Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration, Journal of Biomedical Materials Research Part A 101(12) (2013) 3474-3481.Google Scholar

  • [137] N.E. Zander, J.A. Orlicki, A.M. Rawlett, T.P. Beebe, Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration, Journal of Materials Science: Materials in Medicine 24(1) (2013) 179-187.Google Scholar

  • [138] B.M. Baker, A.O. Gee, R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, R.L. Mauck, The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials 29(15) (2008) 2348-2358.Google Scholar

  • [139] L. Wright, T. Andric, J. Freeman, Utilizing NaCl to increase the porosity of electrospun materials, Materials Science and Engineering: C 31(1) (2011) 30-36.Google Scholar

  • [140] H. Awad, TENDON TISSUE ENGINEERING, (2012). Google Scholar

  • [141] J. Wu, S. Liu, L. He, H. Wang, C. He, C. Fan, X. Mo, Electrospun nanoyarn scaffold and its application in tissue engineering,Materials Letters 89 (2012) 146-149.Google Scholar

  • [142] J.Wu, C. Huang,W. Liu, A. Yin,W. Chen, C. He, H.Wang, S. Liu, C. Fan, G.L. Bowlin, Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning, Journal of biomedical nanotechnology 10(4) (2014) 603-614.Google Scholar

  • [143] Y. Xu, J. Wu, H. Wang, H. Li, N. Di, L. Song, S. Li, D. Li, Y. Xiang, W. Liu, Fabrication of Electrospun Poly (L-Lactide-co-"- Caprolactone)/Collagen Nanoyarn Network as a Novel, Three- Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering, Tissue Engineering Part C: Methods 19(12) (2013) 925-936.Google Scholar

  • [144] Y. Xu, S. Dong, Q. Zhou, X. Mo, L. Song, T. Hou, J. Wu, S. Li, Y. Li, P. Li, The effect of mechanical stimulation on the maturation of TDSCs-poly (L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering, Biomaterials 35(9) (2014) 2760-2772.Google Scholar

  • [145] M. Simonet,O.D. Schneider, P. Neuenschwander,W.J. Stark, Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template, Polymer Engineering & Science 47(12) (2007) 2020-2026.Google Scholar

  • [146] M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, In vitro cell infiltrationand in vivo cell infiltration and vascularization in a fibrous, highly porous poly (D, L-lactide) scaffold fabricated by cryogenic electrospinning technique, Journal of biomedicalmaterials research Part A 91(1) (2009) 231-240.Google Scholar

  • [147] M.F. Leong, W.Y. Chan, K.S. Chian, M.Z. Rasheed, J.M. Anderson, Fabrication and in vitro and in vivo cell infiltration study of a bilayered cryogenic electrospun poly(D,L-lactide) scaffold, Journal of biomedicalmaterials research. Part A 94(4) (2010) 1141-9.Google Scholar

  • [148] J.T. McCann, M. Marquez, Y. Xia, Highly porous fibers by electrospinning into a cryogenic liquid, Journal of the American Chemical Society 128(5) (2006) 1436-1437.Google Scholar

  • [149] V.S. Joshi, N.Y. Lei, C.M. Walthers, B. Wu, J.C. Dunn, Macroporosity enhances vascularization of electrospun scaffolds, The Journal of surgical research 183(1) (2013) 18-26.Google Scholar

  • [150] B.L. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, S. Li, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta biomaterialia 8(7) (2012) 2648-58.Google Scholar

  • [151] H. Huang, Z. Guo, Human dermis separation via ultra-short pulsed laser plasma-mediated ablation, Journal of Physics D: Applied Physics 42(16) (2009) 165204.Google Scholar

  • [152] S. Zhong, Y. Zhang, C.T. Lim, Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review, Tissue engineering. Part B, Reviews 18(2) (2012) 77-87.Google Scholar

  • [153] H. woon Choi, J.K. Johnson, J. Nam, D.F. Farson, J. Lannutti, Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation, Journal of Laser Applications 19(4) (2007) 225-231.Google Scholar

  • [154] J. Lannutti, D. Reneker, T. Ma, D. Tomasko, D. Farson, Electrospinning for tissue engineering scaffolds, Materials Science and Engineering: C 27(3) (2007) 504-509.Google Scholar

  • [155] B.A. Blakeney, A. Tambralli, J.M. Anderson, A. Andukuri, D.J. Lim, D.R. Dean, H.W. Jun, Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold, Biomaterials 32(6) (2011) 1583-90.Google Scholar

  • [156] W. Chen, S. Chen, Y. Morsi, H. El-Hamshary, M. El-Newhy, C. Fan, X. Mo, Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering, ACS Applied Materials & Interfaces 8(37) (2016) 24415-24425.Google Scholar

  • [157] W. Chen, J. Ma, L. Zhu, Y. Morsi, E.-H. Hany, S.S. Al-Deyab, X. Mo, Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering, Colloids and Surfaces B: Biointerfaces 142 (2016) 165-172.Google Scholar

About the article

Received: 2017-04-07

Accepted: 2017-06-18

Published Online: 2017-09-02

Published in Print: 2017-08-28


Citation Information: Electrospinning, Volume 1, Issue 1, Pages 46–61, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nahal Aliheidari, Nojan Aliahmad, Mangilal Agarwal, and Hamid Dalir
Sensors, 2019, Volume 19, Number 16, Page 3587
[2]
Buddy D. Ratner
Annual Review of Biomedical Engineering, 2019, Volume 21, Number 1, Page 171
[3]
Pooran Golkar, Sahar Kalani, Ali Reza Allafchian, Hassan Mohammadi, and Seyed Amir Hossein Jalali
Journal of Applied Polymer Science, 2019, Volume 136, Number 32, Page 47852
[4]
Roqia Ashraf, Hasham S. Sofi, Hern Kim, and Faheem A. Sheikh
Journal of Bionic Engineering, 2019, Volume 16, Number 2, Page 189
[5]
Raghvendra Kumar Mishra, Priyanka Mishra, Kartikey Verma, Aniruddha Mondal, Ratiram Gomaji Chaudhary, Mohammad Mahdi Abolhasani, and Sravanthi Loganathan
Environmental Chemistry Letters, 2018
[6]
Michel Vong and Norbert Radacsi
Electrospinning, 2018, Volume 2, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in