Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Commercializing Electrospun Scaffolds for Pluripotent Stem Cell-based Tissue Engineering Applications

Nima Khadem Mohtaram / Vahid Karamzadeh / Yousef Shafieyan / Stephanie M. Willerth
  • Corresponding author
  • Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
  • Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
  • Centre for Biomedical Research, Victoria, BC, Canada
  • International Collaboration On Repair Discoveries, Vancouver, BC, Canada
  • Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-18 | DOI: https://doi.org/10.1515/esp-2017-0003


Tissue engineering, the process of combining bioactive scaffolds often with cells to produce replacements for damaged organs, represents an enormous market opportunity. This review critically evaluates the commercialization potential of electrospun scaffolds for applications in stem cell biology, including tissue engineering. First, it provides an overview of pluripotent stem cells (PSCs) and their defining properties, pluripotency and the ability to self-renew. These cells serve as an important tool for engineering tissues, including for clinical applications. Next, we review the technique of electrospinning and its promise for fabricating cell culture substrates and scaffolds for directing tissue formation from stem cells and compare these scaffolds to existing technologies, such as hydrogels. We address the associated market for electrospun scaffolds for PSCs and its potential for growth along with highlighting the importance of 3D cell culture substrates for PSCs by analyzing the net capital invested in this market and the associated growth rate. This review finishes by detailing the current state of commercializing electrospun scaffolds along with pathways for translating these scaffolds from research laboratories into successful start-up companies and the associated challenges with this process.

Keywords : Pluripotent stem cells; Electrospinning; Nanofibers; Microfibers; Commercialization; Tissue engineering


  • [1] Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell stem cell. 2007; 1(1):35-8.Google Scholar

  • [2] Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences. 1964; 51(1):29-36.Google Scholar

  • [3] Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The lancet. 1999; 354:S32-S4.Google Scholar

  • [4] McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiation research. 1960; 13(1):115-25.CrossrefGoogle Scholar

  • [5] Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bonemarrow cells. Radiation research. 1961; 14(2):213-22.CrossrefGoogle Scholar

  • [6] Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. 1963.Google Scholar

  • [7] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292(5819):154-6.Google Scholar

  • [8] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. science. 1998; 282(5391):1145-7.Google Scholar

  • [9] Biotherapeutic A. Asterias Biotherapeutics Receives Safety Clearance to Begin Administering the Highest Dose of AST-OPC1 in the SCiStar Phase 1/2a Clinical Trial in Cervical Spinal Cord Injury Patients. 2016Google Scholar

  • [10] Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’smacular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet. 2015; 385(9967):509-16.Google Scholar

  • [11] Song WK, Park K-M, Kim H-J, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem cell reports. 2015; 4(5):860-72.Google Scholar

  • [12] Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014; 9(5):649-72.CrossrefGoogle Scholar

  • [13] Moon S, Bae D, Jung T, Chung E, Jeong Y, Park S, et al. From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications. International journal of stem cells. 2017; 10(1):1.Google Scholar

  • [14] Loo LSW, Lau HH, Jasmen JB, Lim CS, Teo AKK. An arduous journey from human pluripotent stem cells to functional pancreatic β-cells. Diabetes, Obesity and Metabolism. 2017.Google Scholar

  • [15] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006; 126(4):663-76.Google Scholar

  • [16] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 2007; 131(5):861-72.Google Scholar

  • [17] Okita K, Ichisaka T, Yamanaka S. Generation of germlinecompetent induced pluripotent stem cells. nature. 2007; 448(7151):313-7.Google Scholar

  • [18] Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. The EMBO journal. 2014; 33(5):409-17.CrossrefGoogle Scholar

  • [19] Fields M, Cai H, Gong J, Del Priore L. Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-RelatedMacular Degeneration (AMD). Cells. 2016; 5(4):44.Google Scholar

  • [20] Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nature Reviews Molecular Cell Biology. 2016; 17(3):194-200.CrossrefGoogle Scholar

  • [21] Odorico J, Pedersen R, Zhang S-C. Human embryonic stem cells: Garland Science; 2004.Google Scholar

  • [22] Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, et al. Variation in the safety of induced pluripotent stem cell lines. Nature biotechnology. 2009; 27(8):743-5.Google Scholar

  • [23] Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences. 2010; 107(28):12704-9.Google Scholar

  • [24] Clancy JL, Patel HR, Hussein SM, Tonge PD, Cloonan N, Corso AJ, et al. Small RNA changes en route to distinct cellular states of induced pluripotency. Nature communications. 2014; 5.Google Scholar

  • [25] Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proceedings of the National Academy of Sciences. 2003; 100(22):12741-6.Google Scholar

  • [26] Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. 2008.Google Scholar

  • [27] Matthys OB, Hookway TA, McDevitt TC. Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. Current Stem Cell Reports. 2016; 2(1):43-51.Google Scholar

  • [28] Assuncao-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int. 2015; 2015:948040.Google Scholar

  • [29] Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering. Acta Biomaterialia. 2017.Google Scholar

  • [30] Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N, et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnology advances. 2016; 34(4):362-79.Google Scholar

  • [31] Enam S, Jin S. Substrates for clinical applicability of stem cells. World journal of stem cells. 2015; 7(2):243.Google Scholar

  • [32] Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of biomedical materials research. 2002; 60(4):613-21.Google Scholar

  • [33] Shukla S, Brinley E, Cho HJ, Seal S. Electrospinning of hydroxypropyl cellulose fibers and their application in synthesis of nano and submicron tin oxide fibers. Polymer. 2005 Dec 12; 46(26):12130-45.Google Scholar

  • [34] Liao IC, Chew SY, Leong KW. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine : nanotechnology, biology, and medicine. 2006 Dec; 1(4):465-71.Google Scholar

  • [35] Jiang HL, Hu YQ, Zhao PC, Li Y, Zhu KJ. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. Journal of Biomedical Materials Research Part B-Applied Biomaterials. 2006 Oct; 79B(1):50-7.Google Scholar

  • [36] Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. [Research Support, Non-U.S. Gov’t Review]. 2008 May; 29(13):1989-2006.Google Scholar

  • [37] Dalton PD, Joergensen NT, Groll J, Moeller M. Patterned melt electrospun substrates for tissue engineering. Biomed Mater. 2008 Sep; 3(3):034109.Google Scholar

  • [38] Xie J, Macewan MR, Willerth SM, Li X, Moran DW, Sakiyama-Elbert SE, et al. Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Adv Funct Mater. 2009 Jul 24; 19(14):2312-8.Google Scholar

  • [39] Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011 Dec 15; 23(47):5651-7.Google Scholar

  • [40] Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD. Melt electrospinning and its technologization in tissue engineering. Tissue Engineering Part B: Reviews. 2014; 21(2):187-202.CrossrefGoogle Scholar

  • [41] Schaub NJ, Johnson CD, Cooper B, Gilbert RJ. Electrospun Fibers for Spinal Cord Injury Research and Regeneration. J Neurotrauma. 2015 Dec 9.Google Scholar

  • [42] Villarreal-Gómez LJ, Cornejo-Bravo JM, Vera-Graziano R, Grande D. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. Journal of Biomaterials Science, Polymer Edition. 2016; 27(2):157-76.CrossrefGoogle Scholar

  • [43] Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2016.Google Scholar

  • [44] Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2016.Google Scholar

  • [45] Willerth SM. Melt electrospinning in tissue engineering. In: Kny E, Uyar T, Khenoussi N, editors. Electrospunmaterials for tissue engineering and biomedical applications: research, design and commercialization: Elsevier 2017.Google Scholar

  • [46] Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PC, et al. Fabrication of poly (ε-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Journal of Biomaterials Science, Polymer Edition. 2014; 25(1):1-17.CrossrefGoogle Scholar

  • [47] Ko J, Ahsani V, Yao SX, Mohtaram NK, Lee PC, Jun MB. Fabricating and controlling PCL electrospun microfibers using filament feeding melt electrospinning technique. Journal of Micromechanics and Microengineering. 2016; 27(2):025007.CrossrefGoogle Scholar

  • [48] Mohtaram N, Ko J, Agbay A, Rattray D, Neill P, Rajwani A, et al. Development of a glial cell-derived neurotrophic factorreleasing artificial dura for neural tissue engineering applications. Journal of Materials Chemistry B. 2015; 3(40):7974-85.Google Scholar

  • [49] Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length.Materials Science and Engineering: C. 2009; 29(3):663-8.Google Scholar

  • [50] Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Advanced Materials. 2009; 21(32-33):3343-51.Google Scholar

  • [51] Manea L, Hristian L, Leon A, Popa A, editors. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications. IOP Conference Series:Materials Science and Engineering; 2016: IOP Publishing.Google Scholar

  • [52] Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2017; 114:121-43.Google Scholar

  • [53] Uyar T, Kny E. Electrospun Materials for Tissue Engineering and Biomedical Applications: Research, Design and Commercialization: Woodhead Publishing; 2017.Google Scholar

  • [54] Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009; 30(3):354-62.CrossrefGoogle Scholar

  • [55] Mohtaram NK, Ko J, Montgomery A, Carlson M, Sun L, Wong A, et al. Multifunctional electrospun scaffolds for promoting neuronal differentiation of induced pluripotent stem cells. Journal of Biomaterials and Tissue Engineering. 2014; 4(11):906-14.Google Scholar

  • [56] Agbay A, Mohtaram NK, Willerth SM. Controlled release of glial cell line-derived neurotrophic factor from poly (ε-caprolactone) microspheres. Drug delivery and translational research. 2014; 4(2):159-70.Google Scholar

  • [57] Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010 Jun 15; 93(4):1539-50.Google Scholar

  • [58] Mohtaram NK, Ko J, King C, Sun L, Muller N, Jun MB, et al. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. J Biomed Mater Res A. 2015 Aug; 103(8):2591-601.Google Scholar

  • [59] Agbay A, Edgar JM, Robinson M, Styan T,Wilson K, Schroll J, et al. Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury. Cells Tissues Organs. 2016; 202(1-2):42-51.Google Scholar

  • [60] Kim TG, Lee DS, Park TG. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsiloncaprolactone) and poly(ethylene oxide). International Journal of Pharmaceutics. [Research Support, Non-U.S. Gov’t]. 2007 Jun 29; 338(1-2):276-83.Google Scholar

  • [61] Maretschek S, Greiner A, Kissel T. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. Journal of controlled release : oflcial journal of the Controlled Release Society. 2008 Apr 21; 127(2):180-7.Google Scholar

  • [62] Piras AM, Chiellini F, Chiellini E, Nikkola L, Ashammakhi N. New Multicomponent Bioerodible Electrospun Nanofibers for Dualcontrolled Drug Release. Journal of Bioactive and Compatible Polymers. 2008; 23(5):423-43.CrossrefGoogle Scholar

  • [63] Valmikinathan CM, Defroda S, Yu XJ. Polycaprolactone and Bovine Serum Albumin Based Nanofibers for Controlled Release of Nerve Growth Factor. Biomacromolecules. 2009 May; 10(5):1084-9.CrossrefGoogle Scholar

  • [64] Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Current pharmaceutical design. 2015; 21(15):1944-59.Google Scholar

  • [65] Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005; 26(30):5999-6008.Google Scholar

  • [66] da Silva MLA,Martins A, Costa-Pinto AR, Costa P, Faria S, Gomes M, et al. Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules. 2010 Dec; 11(12):3228-36.Google Scholar

  • [67] Chung S, Ingle NP, Montero GA, Kim SH, KingMW. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010 Jun; 6(6):1958-67.Google Scholar

  • [68] Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L. Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics. 2012 Feb 11.Google Scholar

  • [69] Mohtaram NK, Ko J, King C, Sun L, Muller N, Jun MBG, et al. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. Journal of Biomedical Materials Research Part A. 2015; 103(8):2591-601.Google Scholar

  • [70] Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs. Advanced Materials. 2017.CrossrefGoogle Scholar

  • [71] Kim P-H, Cho J-Y. Myocardial tissue engineering using electrospun nanofiber composites. BMB reports. 2016; 49(1):26.Google Scholar

  • [72] Tang Y, Liu L, Li J, Yu L, Wang L, Shi J, et al. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale. 2016; 8(30):14530-40.Google Scholar

  • [73] Deng Y, Yang Y, Wei S. Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells. Biomacromolecules. 2017.Google Scholar

  • [74] Xie J, Peng C, Zhao Q, Wang X, Yuan H, Yang L, et al. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta biomaterialia. 2016; 29:365-79.CrossrefGoogle Scholar

  • [75] Liu J, Nie H, Xu Z, Niu X, Guo S, Yin J, et al. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS one. 2014; 9(11):e111566.Google Scholar

  • [76] Higuchi A, Kumar SS, Ling Q-D, Alarfaj AA,MunusamyMA,Murugan K, et al. Polymeric design of cell culturematerials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science. 2017; 65:83-126.Google Scholar

  • [77] Yang JJ, Liu JF, Kurokawa T, Kitada K, Gong JP. Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells. Journal of tissue engineering and regenerative medicine. 2015; 9(4):375-88.Google Scholar

  • [78] Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem cells translational medicine. 2015; 4(2):156-64.Google Scholar

  • [79] Kumar D, Dale TP, Yang Y, Forsyth NR. Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomedical Materials. 2015; 10(6):065017.Google Scholar

  • [80] Leong MF, Lu HF, Lim TC, Du C, Ma NK, Wan AC. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells. Acta biomaterialia. 2016; 46:266-77.CrossrefGoogle Scholar

  • [81] Liu L, Kamei K-i, Yoshioka M, Nakajima M, Li J, Fujimoto N, et al. Nano-on-micro fibrous extracellularmatrices for scalable expansion of human ES/iPS cells. Biomaterials. 2017; 124:47-54.Google Scholar

  • [82] Hutmacher DW, Dalton PD. Melt electrospinning. Chem Asian J. 2011 Jan 3; 6(1):44-56.Google Scholar

  • [83] Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M. Melt electrospinning of poly-(ethylene glycol-block-epsiloncaprolactone). Biotechnol J. 2006 Sep; 1(9):998-1006.Google Scholar

  • [84] Dalton PD, Lleixà Calvet J, Mourran A, Klee D, Möller M. Melt electrospinning of poly-(ethylene glycol-block-ε-caprolactone). Biotechnology journal. 2006; 1(9):998-1006.Google Scholar

  • [85] Dalton PD, Grafahrend D, Klinkhammer K, Klee D,Möller M. Electrospinning of polymer melts: phenomenological observations. Polymer. 2007; 48(23):6823-33.CrossrefGoogle Scholar

  • [86] Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(epsiloncaprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013 Jun; 5(2):025001.Google Scholar

  • [87] Dalton PD, Muerza-Cascante ML, Hutmacher DW. Design and Fabrication of Scaffolds via Melt Electrospinning for Applications in Tissue Engineering. In: Mitchell GR, editor. Electrospinning: Principles, practice and possibilities: Royal Society of Chemistry; 2015.Google Scholar

  • [88] Hochleitner G, Jüngst T, Brown TD, Hahn K, Moseke C, Jakob F, et al. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication. 2015; 7(3):035002.Google Scholar

  • [89] Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD. Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B Rev. 2015 Apr; 21(2):187-202.Google Scholar

  • [90] Visser J, Melchels FP, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, et al. Reinforcement of hydrogels using threedimensionally printed microfibres. Nat Commun. 2015; 6:6933.Google Scholar

  • [91] Chen F, Hochleitner G, Woodfield T, Groll J, Dalton PD, Amsden BG. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Biomacromolecules. 2016 Jan 11; 17(1):208-14.CrossrefGoogle Scholar

  • [92] Willerth SM. Biomimetic strategies for replicating the neural stem cell niche. Current Opinion in Chemical Engineering. 2017; 15:8-14.Google Scholar

  • [93] Ko J, Bhullar S, Mohtaram N, Willerth S, Jun M. Using mathematical modeling to control topographical properties of poly (ε- caprolactone) melt electrospun scaffolds. Journal of Micromechanics and Microengineering. 2014; 24(6):065009.Google Scholar

  • [94] Ko J, Mohtaram NK, Ahmed F, Montgomery A, Carlson M, Lee PC, et al. Fabrication of poly (-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. J Biomater Sci Polym Ed. 2014; 25(1):1-17.Google Scholar

  • [95] Mohtaram NK, Ko J, Montgomery A, Carlson M, Sun L, Wong A, et al. Fabrication of encapsulated nanofibers with varied topographies for the neuronal differentiation of mouse induced pluripotent stem cells. Biofabrication. 2014(Under review).Google Scholar

  • [96] Ko J, Mohtaram NK, Lee PC, Willerth SM, Jun MB. Mathematical model for predicting topographical properties of poly (ε- caprolactone) melt electrospun scaffolds including the effects of temperature and linear transitional speed. Journal of Micromechanics and Microengineering. 2015; 25(4):045018.Google Scholar

  • [97] Conover JC, Notti RQ. The neural stem cell niche. Cell and tissue research. 2008; 331(1):211-24.Google Scholar

  • [98] Lund AW, Yener B, Stegemann JP, Plopper GE. The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev. 2009 Sep; 15(3):371-80.CrossrefGoogle Scholar

  • [99] FisherOZ, Khademhosseini A, Langer R, Peppas NA. Bioinspired materials for controlling stem cell fate. Acc Chem Res. 2010Mar 16; 43(3):419-28.Google Scholar

  • [100] Preston M, Sherman LS. Neural Stem Cell Niches: Critical Roles for the Hyaluronan-Based Extracellular Matrix in Neural Stem Cell Proliferation and Differentiation. Frontiers in bioscience (Scholar edition). 2012; 3:1165.Google Scholar

  • [101] Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA)-General Subjects. 2014; 1840(8):2506-19.Google Scholar

  • [102] Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of anatomy. 2015; 227(6):746-56.Google Scholar

  • [103] Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora S, et al. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research & Therapy. 2016; 7(1):188.Google Scholar

  • [104] Mashinchian O, Turner L-A, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, et al. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine. 2015; 10(5):829-47.Google Scholar

  • [105] Picollet-D’hahan N, Dolega ME, Liguori L, Marquette C, Le Gac S, Gidrol X, et al. A 3D toolbox to enhance physiological relevance of human tissue models. Trends in Biotechnology. 2016; 34(9):757-69.Google Scholar

  • [106] Moscicki RA, Tandon P. Drug-Development Challenges for Small Biopharmaceutical Companies. New England Journal of Medicine. 2017; 376(5):469-74.Google Scholar

  • [107] Raspa A, Pugliese R,Maleki M, Gelain F. Recent therapeutic approaches for spinal cord injury. Biotechnol Bioeng. 2015 Jul 1.Google Scholar

  • [108] Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell transplantation. 2016; 25(5):829-48.Google Scholar

About the article

Received: 2017-05-08

Accepted: 2017-07-05

Published Online: 2017-08-18

Published in Print: 2017-08-18

Citation Information: Electrospinning, Volume 1, Issue 1, Pages 62–72, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in