Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Correlation between electrospinning parameters and magnetic properties of BiFeO3 nanofibers

Guilherme H. F. Melo
  • Department of Materials Engineering Universidade Federal de São Carlos 13560-480 São Carlos, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ João P. F. Santos
  • Department of Materials Engineering Universidade Federal de São Carlos 13560-480 São Carlos, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandre J. Gualdi / Chieh-Ming Tsai
  • Department of Materials Science and Engineering University of Florida 32611-6400 Gainesville, Fl, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang M. Sigmund
  • Department of Materials Science and Engineering University of Florida 32611-6400 Gainesville, Fl, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rosario E. S. Bretas
  • Corresponding author
  • Department of Materials Engineering Universidade Federal de São Carlos 13560-480 São Carlos, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-12 | DOI: https://doi.org/10.1515/esp-2017-0004


BiFeO3 nanofibers of different morphologies and dimensions were produced by electrospinning varying the collector and thermal treatment. By thermogravimetric analyses (TGA) the thermal behavior of the as-spun nanofiberswas studied. The morphology of the nanofibers was examined by transmission and scanning electron microscopy (TEM and SEM, respectively) while the chemical composition and crystal structure were analyzed by energy dispersive x-ray spectrometry (EDS) and wide angle x-ray diffraction (WAXD). A vibrating sample magnetometer (VSM) was used to evaluate the magnetic properties. Different types of mats with different nanofibers´ dimensions were obtained; while some nanofibers were interconnected, otherswere completely separated and aligned. The thinnest nanofiberswere obtained using an aluminum substrate with folds and after annealing at 550∘C. All samples annealed at this temperature formed pure BiFeO3, while samples annealed at 550 and 750∘C formed an additional Bi2Fe4O9 phase. No iron impurities were detected; the crystallite size of all the nanofibers was between 30 and 36 nm. The saturation magnetization increased with the decrease of the nanofiber´s diameter and increase of nanofibers interconnectivity. Thus, this ferromagnetism behavior was attributed to the suppression of the spiral spin structure of BiFeO3 (which has a 62 nm period) and to the morphology of interconnected nanofibers.

Keywords : BiFeO3; electrospinning; crystal structure; magnetic behavior


  • [1] W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature, 442, 2006,759.Google Scholar

  • [2] C. Ederer and N.A.Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys.Review B, 71, 2005, 060401(R).Google Scholar

  • [3] Algueró M, Gregg J.M. and Mitoseriu L., Nanoscale Ferrolectrics and Multiferroics: Key Processing and Characterization issues, and Nanoscale effects, Vol. 1, 1st ed., John Wiley & Sons Ltd., West Sussex, U.K, 2016.Google Scholar

  • [4] F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom and R. Ramesh,Multiferroic BiFeO3 films: domain structure and polarization dynamics, Phase Transitions, 79, 12, 2006, 991.CrossrefGoogle Scholar

  • [5] T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic, B. Jancar, G.Tavcar, M. Makarovic, J. Walker, B. Malic and D. Damjanovic, Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects, Nature Materials, 16, 2017,322.CrossrefWeb of ScienceGoogle Scholar

  • [6] M. Coll, J. Gazquez, I. Fina, Z. Khayat, A. Quindeau, M. Alexe, M.Varela, S. Trolier-, McKinstry, X. Obradors and T. Puig, Nanocrystalline ferroelectric BiFeO3 thin films by low-temperature atomic layer deposition, Chem.Mater., 27, 2015,6322.Web of ScienceGoogle Scholar

  • [7] S. Hong, T. Choi, J.H. Jeon, Y. Kim, H. Lee, H.Y. Joo, I. Hwang, J.S. Kim, S.O. Kang, S.V. Kalinin and B.H. Park, Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes, Adv.Mater., 25, 2013, 2339.Google Scholar

  • [8] J. Wu, S. Mao, Z.G. Ye, Z. Xie and L. Zheng, Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a selfcatalyzed fast reaction process, J.Mater.Chem., 20, 2010, 6512.Google Scholar

  • [9] Q. Xu, X. Zheng, Z. Wen, Y. Yang, D. Wu and M. Xu, Enhanced room temperature ferromagnetism in porous BiFeO3 prepared using cotton templates, Solid State Communications, 151, 2011,62.Google Scholar

  • [10] E.M.M. Ibrahim, G. Farghal, M.M. Khalaf and H.M.A. El-Lateef, Effect of calcination temperature onmagnetic and electrical properties of BiFeO3 nanoparticles prepared by sol-gel method., J.Nano.Adv.Mat.,5,1, 2017,33.Google Scholar

  • [11] Q. Xu, C. Hu, J. Wang and J. Du, Enhanced ferromagnetism in BiFeO3 powders by rapid combustion of graphite powders, AIP Adv., 7, 2017, 055803.Web of ScienceGoogle Scholar

  • [12] S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager III and R. Ramesh, Photovoltaic effects in BiFeO3, Appl.Phys.Lett., 95, 2009, 062909.Google Scholar

  • [13] H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh and S.W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3, Adv.Mater., 23, 2011, 3403.Web of ScienceGoogle Scholar

  • [14] S. Sharma, M. Tomar, A. Kumar, N.K. Puri and V. Gupta, Photovoltaic effect in BiFeO3 multilayer structure fabricated by chemical solution deposition technique, J.Phys.Chem.Solids, 93, 2016, 63.Web of ScienceGoogle Scholar

  • [15] T. Zhao, A. Scholl, F. Zavaliche, K.Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M.Kim, S.H. Baek, C.B. Eom and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nature Materials, 5, 2006, 823.CrossrefGoogle Scholar

  • [16] X. Ke, P.P. Zhang, S.H. Baek, J. Zarestky, W. Tian and C.B. Eom, Magnetic structure of epitaxialmultiferroic BiFeO3 filmswith engineered ferroelectric domains, Phys.Rev.B., 82, 2010,134448.Google Scholar

  • [17] I. Sosnowska, T. Peterlin-Neumaier and E. Steichele, Spiralmagnetic ordering in bismuth ferrite, J.Phys.C: Solid State Phys.,15, 1982, 4835.CrossrefGoogle Scholar

  • [18] V.G. Prokhorov, G. G. Kaminsky, J.M. Kim, T.W. Eom, J.S. Park, Y.P. Lee and V.L. Svetchnikov, Evidence of non-Dzyaloshinskii-Moriya ferromagnetism in epitaxial BiFeO3 films, Low Temp.Physics, 37, 2011, 2.Google Scholar

  • [19] R. Mazumder, P.S.Devi, D. Bhattacharya, P. Choudhury, A. Sen and M. Raja, Ferromagnetism in nanoscale BiFeO3, Appl.Phys.Lett. 91, 2007,062510.Google Scholar

  • [20] T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R.Moodenbaugh and S.S. Wong, Size-dependent magnetic properties of singlecrystalline multiferroic BiFeO3 nanoparticles, Nano Lett., 7, 3, 2007,766.CrossrefGoogle Scholar

  • [21] F. Gao, X.Chen, K.Yin, S. Dong, Z. Ren, F.Yuan, T.Yu, Z. Zou and J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv.Mater., 19, 2007,2889.Web of ScienceGoogle Scholar

  • [22] S. Basu, M. Pal and D. Chakravorty, Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles, J.Magnetism and Magnetic Materials, 320, 2008, 3361.Google Scholar

  • [23] F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T.Xu, J.He, C.Yue and J. Zhu, Peculiar magnetism of BiFeO3 nanoparticles approaching the period of the spiral spin structure, Sci.Rep.3, 2907, 2013, DOI: 10.1038/srep02907.CrossrefWeb of ScienceGoogle Scholar

  • [24] B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya and D. Das, Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles, J.Phys. D: Appl.Phys., 42, 2009, 065004.Google Scholar

  • [25] H. Hojo, R.Kawabe, K. Shimizu, H. Yamamoto, K. Mibu, K. Samanta, T. Saha-Dasgupta and M. Azuma, Ferromagnetism at room temperature induced by spin structure change in BiFe1−xCoxO3 thin films, Adv.Mater., 29, 2017,1603131.Google Scholar

  • [26] W. Wang, N. Li, Y. Chi, Y. Li, W. Yan, X. Li and C. Shao, Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity, Ceramics International, 39, 2013,3511.Web of ScienceGoogle Scholar

  • [27] A. Baji, Y.W. Mai, Q. Li, S.C. Wong, Y. Liu, and O.W. Yao, Onedimensionalmultiferroic bismuth ferrite fibers obtained by electrospinning techniques, Nanotechnology, 22, 2011, 235702.Google Scholar

  • [28] J.H. Song, J.H. Nam, J.H. Cho, B.I. Kim, M.P.Chun and D.K.Choi, Microstructures and multiferroic properties of electrospun BiFeO3 nanofibers, J.Korean Phys.Soc., 59, 3, 2011,2308.Web of ScienceGoogle Scholar

  • [29] L. Wu, W. Sui, C. Dong, C. Zhang and C. Jiang, One-dimensional BiFeO3 nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects, Appl. Surface Sci., 384, 2016,368.Google Scholar

  • [30] M. Sakar, S. Balakumar, P. Saravanan and S.N. Jaisankar, Electric field induced formation of one-dimensional bismuth ferrite (BiFeO3) nanostructures in electrospinning process, Materials and Design, 94, 2016, 487.Google Scholar

  • [31] L.M. Guerrini, M.C. Branciforti, T. Canova and R.E.S. Bretas , Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights, Mater.Res., 12, 2, 2009,181.CrossrefWeb of ScienceGoogle Scholar

  • [32] A.B. da Silva and R.E.S. Bretas, Preparation and characterization of PA6/PAni-TSA nanofibers, Synth.Met., 162, 2012,1537.Google Scholar

  • [33] J.P.F. Santos, A.B. da Silva, U. Sundararaj and R.E.S. Bretas, Novel electrical conductive hybrid nanostructures based on PA6/MWCNTCOOH electrospun nanofibers and anchored MWCNTCOOH, Polym.Eng.Sci., 55, 2015,1263.Web of ScienceGoogle Scholar

  • [34] J.M.F. Jabal, L. McGarry, A. Sobczyk and D.E. Aston, Wettability of electrospun poly (vinylpyrrolidone)-titania fiber mats on glass and ITO substrates in aqueous media, Appl. Mater.& Interf., 1, 10, 2009,2325.Web of ScienceGoogle Scholar

  • [35] J.M.F. Jabal, L. McGarry, A. Sobczyk and D.E. Aston, Substrate effects on the wettability of electrospun titania-poly (vinylpyrrolidone) fiber mats, Langmuir, 26, 16, 2010,13550.Web of ScienceCrossrefGoogle Scholar

  • [36] T. Uemura and S. Kitagawa, Prussian blue nanoparticles protected by poly (vinylpyrrolidone), J.Amer. Chem.Soc., 125, 2003,7814.Google Scholar

  • [37] N. Sakulchaicharoen, D.M. O´Carroll and J.E. Herrera, Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles, J.Cont.Hydrology, 118, 2010,117.Google Scholar

  • [38] B.A. Rozenberg and R. Tenne, Polymer-assisted fabrication of nanoparticles and nanocomposites, Prog.Polym.Sci., 33, 2008, 40.CrossrefGoogle Scholar

  • [39] W. Kim, C.Y. Suh, S.W. Cho, K.M. Roh, H.Kwon, K.Song and I.J. Shon, A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique, Talanta, 94, 2012, 348.Web of ScienceGoogle Scholar

  • [40] S. Layek and H.C. Verma, Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method, Adv.Mat.Lett., 3, 6, 533, 2012.Google Scholar

  • [41] I.K. Batttisha, I.S.A. Farag, M. Kamal, M. A. Ahmed, E. Girgis, H.A. El Meleegi and F. El Desouki, Dielectric and magnetic properties of nano-structure BiFeO3 doped with different concentrations of Co ions prepared by sol-gel method, New J.Glass and Ceramics, 5, 2015, 59.Google Scholar

  • [42] S. Schwung, A. Rogov, G. Clarke, C. Joulaud, T. Magouroux, D. Staedler, S. Passemard, T. Justel, L. Badie, C. Galez, J.P. Wolf, Y.Volkov, A. Prina-Mello, S. Gerber-Lemaire, D. Rytz, Y.Mugnier, L. Bonacina and R.L.Dantec, Non-linear optical and magnetic properties of BiFeO3 harmonic nanoparticles, J.Appl.Phys., 116, 2014,114306.Google Scholar

  • [43] X. Zhang, H. Liu, B. Zheng, Y. Lin, D. Liu and C.W. Nan, Photocatalytic andmagnetic behaviors observed in BiFeO3 nanofibers by electrospinning, J.Nanomaterials, 2013, 917948.Google Scholar

  • [44] S. Bharathkumar, M. Sakar, R.Vinod and S. Balakumar, Versatility of electrospinning in the fabrication of fibrousmat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities, Phys.Chem.Phys., 17, 2015,17745.Google Scholar

  • [45] S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan and Y. Qiao, Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning, Appl.Phys.Lett., 93, 2008, 222904.Google Scholar

About the article

Received: 2017-05-16

Accepted: 2017-07-16

Published Online: 2017-10-12

Published in Print: 2017-10-26

Citation Information: Electrospinning, Volume 1, Issue 1, Pages 73–86, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2017-0004.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

João Paulo Ferreira Santos, Benjamim de Melo Carvalho, and Rosario Elida Suman Bretas
Journal of Applied Polymer Science, 2019, Volume 136, Number 17, Page 47409
João Paulo Ferreira Santos, Aline Bruna da Silva, Mohammad Arjmand, Uttandaraman Sundararaj, and Rosario Elida Suman Bretas
European Polymer Journal, 2018

Comments (0)

Please log in or register to comment.
Log in