Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Electrospinning

Ed. by Uyar, Tamer

Open Access
Online
ISSN
2391-7407
See all formats and pricing
More options …

Decellularized extracellular matrices for tissue engineering applications

Hady H. Elmashhady
  • Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University Saint Louis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruce A. Kraemer
  • Division of Plastic and Reconstructive Surgery, Saint Louis University School of Medicine, Saint Louis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krishna H. Patel
  • Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University Saint Louis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Scott A. Sell
  • Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University Saint Louis, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Koyal Garg
  • Corresponding author
  • Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-20 | DOI: https://doi.org/10.1515/esp-2017-0005

Abstract

Decellularization removes cellular antigens while preserving the ultrastructure and composition of extracellular matrix (ECM). Decellularized ECM (DECM) scaffolds have been widely used in various tissue engineering applications with varying levels of success. The mechanical, architectural and bioactive properties of a DECM scaffold depend largely on the method of decellularization and dictate its clinical efficacy. This article highlights the advantages and challenges associated with the clinical use of DECM scaffolds. Poor mechanical strength is a significant disadvantage of some DECM scaffolds in the repair of load-bearing tissues as well as critical-size defects, where long-term mechanical support is required for the regenerating tissue. Combining DECM scaffolds with synthetic biocompatible polymers could provide a useful strategy to circumvent the issues of poor mechanical stability. This article reviews studies that have combined DECM scaffolds from various tissues with synthetic polymers to create hybrid scaffolds using electrospinning. These hybrid scaffolds provide a mechanical backbone while retaining the bioactive properties of DECM, thus offering a significant advantage for tissue engineering and regenerative medicine applications.

Keywords: decellularization; electrospinning; nanofibers; tissue engineering

References

  • [1] Wolf, M.T., et al., Naturally derived and syntheticscaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev, 2015.84: p. 208-21.Google Scholar

  • [2] Sicari, B.M., et al., An acellular biologic scaffoldpromotes skeletal muscle formation in mice and humans with volumetric muscleloss. Sci Transl Med, 2014. 6(234): p. 234ra58. Google Scholar

  • [3] Vorotnikova, E., et al., Extracellular matrix-derivedproducts modulate endothelial and progenitor cell migration and proliferation invitro and stimulate regenerative healing in vivo.Matrix Biol, 2010.29(8): p. 690-700. Google Scholar

  • [4] Zhou, Q., et al., Stem cells with decellularized liverscaffolds in liver regeneration and their potential clinical applications. LiverInt, 2015. 35(3): p. 687-94. Google Scholar

  • [5] Brown, B.N., et al.,Macrophage phenotype and remodelingoutcomes in response to biologic scaffolds with and without a cellularcomponent. Biomaterials, 2009. 30(8): p. 1482-91. Google Scholar

  • [6] Sicari, B.M., et al., Tissue engineering and regenerativemedicine approaches to enhance the functional response to skeletal muscleinjury. Anat Rec (Hoboken), 2014. 297(1): p. 51-64.Google Scholar

  • [7] Wolf, M.T., et al., Biologic scaffold composed ofskeletal muscle extracellular matrix. Biomaterials, 2012. 33(10): p.2916-25. Google Scholar

  • [8] Corona, B.T., et al., The promotion of a functionalfibrosis in skeletal muscle with volumetric muscle loss injury following thetransplantation of muscle-ECM. Biomaterials, 2013. 34(13): p. 3324-35. Google Scholar

  • [9] Garg, K., et al., Transplantation of devitalized musclescaffolds is insuflcient for appreciable de novo muscle fiber regeneration aftervolumetric muscle loss injury. Cell Tissue Res, 2014. 358(3): p.857-73. Google Scholar

  • [10] Machingal, M.A., et al., A tissue-engineered musclerepair construct for functional restoration of an irrecoverable muscle injury ina murine model. Tissue Eng Part A, 2011. 17(17-18): p. 2291-303. Google Scholar

  • [11] De Waele, J., et al., 3D culture of murine neural stemcells on decellularized mouse brain sections. Biomaterials, 2015. 41:p. 122-31. Google Scholar

  • [12] Lin, Q., et al., Enhanced neuroprotection withdecellularized brain extracellular matrix containing bFGF after intracerebraltransplantation in Parkinson’s disease rat model. Int J Pharm, 2017.517(1-2): p. 383-394. Google Scholar

  • [13] Aurora, A., et al., An acellular biologic scaffold doesnot regenerate appreciable de novo muscle tissue in rat models of volumetricmuscle loss injury. Biomaterials, 2015. 67: p. 393-407. Google Scholar

  • [14] Freytes, D.O., et al., Biaxial strength ofmultilaminated extracellular matrix scaffolds. Biomaterials, 2004.25(12): p. 2353-61. Google Scholar

  • [15] Ma, J., et al., Investigating muscle regeneration with adermis/ small intestinal submucosa scaffold in a rat full-thickness abdominal walldefect model. J Biomed Mater Res B Appl Biomater, 2015. 103(2): p.355-64. Google Scholar

  • [16] Valentin, J.E., et al., Functional skeletal muscleformation with a biologic scaffold. Biomaterials, 2010. 31(29): p.7475-84. Google Scholar

  • [17] Evans, D.W., et al., Scale-dependent mechanicalproperties of native and decellularized liver tissue. Biomech Model Mechanobiol,2013. 12(3): p. 569-80. Google Scholar

  • [18] Kajbafzadeh, A.M., et al., Determining the optimaldecellularization and sterilization protocol for preparing a tissue scaffold of ahuman-sized liver tissue. Tissue Eng Part C Methods, 2013. 19(8): p.642-51.Google Scholar

  • [19] Ren, H., et al., Evaluation of two decellularizationmethods in the development of a whole-organ decellularized rat liver scaffold. Liver Int, 2013. 33(3): p. 448-58. Google Scholar

  • [20] Zhang, Q., et al., Decellularized skin/adipose tissueflap matrix for engineering vascularized composite soft tissue flaps. ActaBiomater, 2016. 35: p. 166-84. Google Scholar

  • [21] Dunne, L.W., et al., Human decellularized adipose tissuescaffold as a model for breast cancer cell growth and drug treatments. Biomaterials, 2014. 35(18): p. 4940-9. Google Scholar

  • [22] Wang, L., et al., Combining decellularized human adiposetissue extracellular matrix and adipose-derived stem cells for adipose tissueengineering. Acta Biomater, 2013. 9(11): p. 8921-31. Google Scholar

  • [23] Quint, C., et al., Decellularized tissue-engineeredblood vessel as an arterial conduit. Proc Natl Acad Sci U S A, 2011.108(22): p. 9214-9. Google Scholar

  • [24] Dahl, S.L., et al., Decellularized native and engineeredarterial scaffolds for transplantation. Cell Transplant, 2003. 12(6):p. 659-66. CrossrefGoogle Scholar

  • [25] Xiong, Y., et al., Decellularized porcine saphenousartery for small-diameter tissue-engineered conduit graft. Artif Organs, 2013.37(6): p. E74-87. CrossrefGoogle Scholar

  • [26] Hennessy, R.S., et al., Supercritical carbondioxide-based sterilization of decellularized heart valves. JACC Basic TranslSci, 2017. 2(1): p. 71-84. Google Scholar

  • [27] Yang, M., et al., Surface heparin treatment of thedecellularized porcine heart valve: Effect on tissue calcification. J BiomedMater Res B Appl Biomater, 2017. 105(2): p. 400-405. Google Scholar

  • [28] Dong, S., et al., Decellularized Versus Fresh-FrozenAllografts in Anterior Cruciate Ligament Reconstruction: An In Vitro Study in aRabbit Model. Am J Sports Med, 2015. 43(8): p. 1924-34. Google Scholar

  • [29] Gilbert, T.W., et al., Decellularization of tissues andorgans. Biomaterials, 2006. 27(19): p. 3675-83. Google Scholar

  • [30] Crapo, P.M., et al., An overview of tissue and wholeorgan decellularization processes. Biomaterials, 2011. 32(12): p.3233-43. Google Scholar

  • [31] Mendoza-Novelo, B., et al., Decellularization ofpericardial tissue and its impact on tensile viscoelasticity andglycosaminoglycan content. Acta Biomater, 2011. 7(3): p. 1241-8. Google Scholar

  • [32] Williams, C., et al., Altered structural and mechanicalproperties in decellularized rabbit carotid arteries. Acta Biomater, 2009.5(4): p. 993-1005. CrossrefGoogle Scholar

  • [33] Zou, Y., et al., Mechanical evaluation of decellularizedporcine thoracic aorta. J Surg Res, 2012. 175(2): p. 359-68. Google Scholar

  • [34] Lovekamp, J.J., et al., Stability and function ofglycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials, 2006.27(8): p. 1507-18. Google Scholar

  • [35] Lumpkins, S.B., et al., A mechanical evaluation of threedecellularization methods in the design of a xenogeneic scaffold for tissueengineering the temporomandibular joint disc. Acta Biomater, 2008.4(4): p. 808-16. CrossrefGoogle Scholar

  • [36] Jiang, W.C., et al., Cryo-chemical decellularization ofthe whole liver for mesenchymal stem cells-based functional hepatic tissueengineering. Biomaterials, 2014. 35(11): p. 3607-17. CrossrefGoogle Scholar

  • [37] Parmaksiz, M., et al., Clinical applications ofdecellularized extracellular matrices for tissue engineering and regenerativemedicine. Biomed Mater, 2016. 11(2): p. 022003. CrossrefGoogle Scholar

  • [38] Geiger, S.E., et al., Management of Open Distal LowerExtremity Wounds With Exposed Tendons Using Porcine Urinary Bladder Matrix.Wounds, 2016. 28(9): p. 306-316. Google Scholar

  • [39] Kraemer, B.A., et al., Management of Open LowerExtremity Wounds With Concomitant Fracture Using a Porcine Urinary BladderMatrix. Wounds, 2016. 28(11): p. 387-394. Google Scholar

  • [40] Zheng, M.H., et al., Porcine small intestine submucosa(SIS) is not an acellular collagenous matrix and contains porcine DNA: possibleimplications in human implantation. J Biomed Mater Res B Appl Biomater, 2005.73(1): p. 61-7. Google Scholar

  • [41] Malcarney, H.L., et al., Early inflammatory reactionafter rotator cuff repair with a porcine small intestine submucosal implant: areport of 4 cases. Am J Sports Med, 2005. 33(6): p. 907-11. CrossrefGoogle Scholar

  • [42] Barber, F.A., et al., Tendon augmentation grafts:biomechanical failure loads and failure patterns. Arthroscopy, 2006.22(5): p. 534-8. Google Scholar

  • [43] Mostow, E.N., et al., Effectiveness of an extracellularmatrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: arandomized clinical trial. J Vasc Surg, 2005. 41(5): p. 837-43. CrossrefGoogle Scholar

  • [44] Garg, K., et al., Transplantation of devitalized musclescaffolds is insuflcient for appreciable de novo muscle fiber regeneration aftervolumetric muscle loss injury. Cell Tissue Res, 2014. 358(3): p.857-73. Google Scholar

  • [45] Pollot, B.E., et al., Decellularized extracellularmatrix repair of volumetric muscle loss injury impairs adjacent bone healing in arat model of complex musculoskeletal trauma. J Trauma Acute Care Surg, 2016.81(5 Suppl 2 Proceedings of the 2015 Military Health System ResearchSymposium): p. S184-S190. Google Scholar

  • [46] Aurora, A., et al., A Porcine Urinary Bladder MatrixDoes Not Recapitulate the Spatiotemporal Macrophage Response of MuscleRegeneration after Volumetric Muscle Loss Injury. Cells Tissues Organs, 2016.202(3-4): p. 189-201. Google Scholar

  • [47] Mase, V.J., Jr., et al., Clinical application of anacellular biologic scaffold for surgical repair of a large, traumatic quadricepsfemoris muscle defect. Orthopedics, 2010. 33(7): p. 511. Google Scholar

  • [48] Corona, B.T., et al., The promotion of a functionalfibrosis in skeletal muscle with volumetric muscle loss injury following thetransplantation of muscle-ECM. Biomaterials, 2013. 34(13): p. 3324-35. CrossrefGoogle Scholar

  • [49] Garg, K., et al., Losartan administration reducesfibrosis but hinders functional recovery after volumetric muscle loss injury. JAppl Physiol (1985), 2014. 117(10): p. 1120-31. Google Scholar

  • [50] Ravi, S., et al., Polymeric materials for tissueengineering of arterial substitutes. Vascular, 2009. 17 Suppl 1: p.S45-54. CrossrefGoogle Scholar

  • [51] Gong, W., et al., Hybrid small-diameter vascular grafts:Antiexpansion effect of electrospun poly epsilon-caprolactone on heparin-coateddecellularized matrices. Biomaterials, 2016. 76: p. 359-70. CrossrefGoogle Scholar

  • [52] Hong, H., et al., Fabrication of biomatrix/polymerhybrid scaffold for heart valve tissue engineering in vitro. ASAIO J, 2008.54(6): p. 627-32. CrossrefGoogle Scholar

  • [53] Baiguera, S., et al., Tissue engineered human tracheasfor in vivo implantation. Biomaterials, 2010. 31(34): p. 8931-8. Google Scholar

  • [54] Masaeli, E., et al., Bio-engineered electrospunnanofibrous membranes using cartilage extracellular matrix particles. Journal ofMaterials Chemistry B, 2017. 5(4): p. 765-776. Google Scholar

  • [55] Gao, S., et al., Fabrication and characterization ofelectrospun nanofibers composed of decellularized meniscus extracellular atrixand polycaprolactone for meniscus tissue engineering. Journal of MaterialsChemistry B, 2017. 5(12): p. 2273-2285. Google Scholar

  • [56] Garrigues, N.W., et al., Electrospun cartilage-derivedmatrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A, 2014.102(11): p. 3998-4008. CrossrefGoogle Scholar

  • [57] Hong, Y., et al., An elastomeric patch electrospun froma blended solution of dermal extracellular matrix and biodegradable polyurethanefor rat abdominal wall repair. Tissue Eng Part C Methods, 2012. 18(2):p. 122-32. CrossrefGoogle Scholar

  • [58] Takanari, K., et al., Abdominal wall reconstruction by aregionally distinct biocomposite of extracellular matrix digest and abiodegradable elastomer. J Tissue Eng RegenMed, 2016. 10(9): p.748-61. Google Scholar

  • [59] Stankus, J.J., et al., Hybrid nanofibrous scaffolds fromelectrospinning of a synthetic biodegradable elastomer and urinary bladdermatrix. J Biomater Sci Polym Ed, 2008. 19(5): p. 635-52. Google Scholar

  • [60] Crapo, P.M., et al., Biologic scaffolds composed ofcentral nervous system extracellular matrix. Biomaterials, 2012.33(13): p. 3539-47. CrossrefGoogle Scholar

  • [61] DeQuach, J.A., et al., Decellularized porcine brainmatrix for cell culture and tissue engineering scaffolds. Tissue Eng Part A,2011. 17(21-22): p. 2583-92. Google Scholar

  • [62] Baiguera, S., et al., Electrospun gelatin scaffoldsincorporating rat decellularized brain extracellular matrix for neural tissueengineering. Biomaterials, 2014. 35(4): p. 1205-14. CrossrefGoogle Scholar

  • [63] Wen, X., et al., Cauda equina-derived extracellularmatrix for fabrication of nanostructured hybrid scaffolds applied to neuraltissue engineering. Tissue Eng Part A, 2015. 21(5-6): p. 1095-105. Google Scholar

  • [64] Gibson, M., et al., Tissue extracellular matrixnanoparticle presentation in electrospun nanofibers. Biomed Res Int, 2014.2014: p. 469120. Google Scholar

  • [65] Lee, H., et al., A scaffold with a bio-mimeticallydesigned micro/nano-fibrous structure using decellularized extracellular matrix.RSC Advances, 2016. 6(35): p. 29697-29706. Google Scholar

  • [66] Navone, S.E., et al., Decellularized silk fibroinscaffold primed with adipose mesenchymal stromal cells improves wound healing indiabetic mice. Stem Cell Res Ther, 2014. 5(1): p. 7. Google Scholar

  • [67] Shtrichman, R., et al., The generation of hybridelectrospun nanofiber layer with extracellular matrix derived from humanpluripotent stem cells, for regenerative medicine applications. Tissue Eng PartA, 2014. 20(19-20): p. 2756-67. Google Scholar

  • [68] Jeon, H., et al., Nanostructured surface of electrospun- PCL/dECM fibres treated with oxygen plasma for tissue engineering. RSC Advances,2016. 6(39): p. 32887-32896. Google Scholar

  • [69] Gao, S., et al., Fabrication and characterization ofelectrospun nanofibers composed of decellularized meniscus extracellular matrixand polycaprolactone for meniscus tissue engineering. Journal of MaterialsChemistry B, 2017. 5(12): p. 2273-2285. Google Scholar

  • [70] Navone, S.E., et al., Decellularized silk fibroinscaffold primed with adipose mesenchymal stromal cells improves wound healing indiabetic mice. Stem Cell Res Ther, 2014. 5(1): p. 7. Google Scholar

  • [71] Shtrichman, R., et al., The generation of hybridelectrospun nanofiber layer with extracellular matrix derived from humanpluripotent stem cells, for regenerative medicine applications. Tissue Eng PartA, 2014. 20(19-20): p. 2756-67. Google Scholar

About the article

Received: 2017-05-02

Accepted: 2007-06-23

Published Online: 2017-10-20

Published in Print: 2017-10-26


Citation Information: Electrospinning, Volume 1, Issue 1, Pages 87–99, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2017-0005.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Andrew Dunn, Muhamed Talovic, Krishna Patel, Anjali Patel, Madison Marcinczyk, and Koyal Garg
Journal of Orthopaedic Research, 2019, Volume 37, Number 6, Page 1246
[2]
L.C. Gallo, M. Madaghiele, L. Salvatore, A. Barca, S. Scialla, S. Bettini, L. Valli, T. Verri, V. Bucalá, and A. Sannino
International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, Page 1
[3]
Bharath Kumar Velmurugan, Lohanathan Bharathi Priya, Paramasivan Poornima, Li-Jen Lee, and Rathinasamy Baskaran
Journal of Cellular Physiology, 2018

Comments (0)

Please log in or register to comment.
Log in