Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Electrospun fibers/branched-clusters as building units for tissue engineering

Benjamin A. Minden-Birkenmaier
  • Department of Biomedical Engineering, University of Memphis, Memphis, 38152, TN, United States of America, 330 Engineering Technology Building 3806 Norriswood Avenue Memphis, TN 38152
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gretchen S. Selders
  • Department of Biomedical Engineering, University of Memphis, Memphis, 38152, TN, United States of America, 330 Engineering Technology Building 3806 Norriswood Avenue Memphis, TN 38152
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kasyap Cherukuri
  • Department of Biomedical Engineering, University of Memphis, Memphis, 38152, TN, United States of America, 330 Engineering Technology Building 3806 Norriswood Avenue Memphis, TN 38152
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gary L. Bowlin
  • Corresponding author
  • Department of Biomedical Engineering, University of Memphis, Memphis, 38152, TN, United States of America, 330 Engineering Technology Building 3806 Norriswood Avenue Memphis, TN 38152
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-28 | DOI: https://doi.org/10.1515/esp-2017-0007


Although electrospun templates are effective at mimicking the extracellular matrix (ECM) of native tissue due to the tailorability of parameters such as fiber diameter, polymer composition, and drug loading, these templates are often limited with regards to cell infiltration and the tailorability of the microenvironments within the structures. Thus, there remains a need for a flexible threedimensional template system which could be combined with cell suspensions to promote three-dimensional tissue regeneration, and ultimately allow cells to freely reorganize and modify their microenvironment. In this study, a mincing process was designed and optimized to create mixtures of electrospun fibers/branched-clusters for use as fundamental tissue engineering building units. These fiber/branched-cluster elements were characterized with regards to fiber and branch lengths, and a method was optimized to combine them with normal human dermal fibroblasts (nHDFs) in culture to create interconnected template constructs. Sectioning and imaging of these constructs revealed cell/fiber integration as well as even cell distribution throughout the construct interior. These fiber/branched-cluster elements represent an innovative flexible tissue regeneration template system.

Keywords: Polydioxanone; Scaffold; Electrospinning; Fibrous Templates; Fibers; Branched-clusters; Cellular Infiltration; Biomimetic Material; Template; Tissue Regeneration


  • [1] Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review, Tissue engineering 12, 2006, 1197. Google Scholar

  • [2] H. S. Yoo, T. G. Kim and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Advanced drug delivery reviews 61, 2009, 1033. CrossrefWeb of ScienceGoogle Scholar

  • [3] A. Balguid, A. Mol, M. H. van Marion, R. A. Bank, C. V. Bouten and F. P. Baaijens, Tailoring fiber diameter in electrospun poly ("-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering, Tissue Engineering Part A 15, 2008, 437. CrossrefGoogle Scholar

  • [4] J. Rnjak-Kovacina, S. G. Wise, Z. Li, P. K. Maitz, C. J. Young, Y. Wang, et al., Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering, Biomaterials 32, 2011, 6729. Web of ScienceCrossrefGoogle Scholar

  • [5] D. Nisbet, J. S. Forsythe,W. Shen, D. Finkelstein and M. K. Horne, Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering, Journal of biomaterials applications 2008, Google Scholar

  • [6] M. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss and P. I. Lelkes, Electrospun protein fibers as matrices for tissue engineering, Biomaterials 26, 2005, 5999.CrossrefGoogle Scholar

  • [7] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, et al., Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release 92, 2003, 227. CrossrefGoogle Scholar

  • [8] E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy and G. E. Wnek, Processing of polymer nanofibers through electrospinning as drug delivery systems, Materials Chemistry and Physics 113, 2009, 296. Google Scholar

  • [9] X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie and X. Jing, Electrospinning of polymeric nanofibers for drug delivery applications, Journal of Controlled Release 185, 2014, 12. Google Scholar

  • [10] E.-R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, et al., Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend, Journal of controlled release 81, 2002, 57. Google Scholar

  • [11] B. Minden-Birkenmaier, Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair, 2015, Google Scholar

  • [12] M. J. McClure, P. S. Wolfe, D. G. Simpson, S. A. Sell and G. L. Bowlin, The use of air-flow impedance to control fiber deposition patterns during electrospinning, Biomaterials 33, 2012, 771. Web of ScienceCrossrefGoogle Scholar

  • [13] M. F. Leong, W. Y. Chan and K. S. Chian, Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures, Nanomedicine 8, 2013, 555. Web of ScienceGoogle Scholar

  • [14] K.Wang, M. Xu, M. Zhu, H. Su, H.Wang, D. Kong, et al., Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration, Journal of Biomedical Materials Research Part A 101, 2013, 3474. Web of ScienceGoogle Scholar

  • [15] G. S. Selders, A. E. Fetz, S. L. Speer and G. L. Bowlin, Fabrication and characterization of air-impedance electrospun polydioxanone templates, Electrospinning 1, 2016, 20. Google Scholar

  • [16] J. J. Stankus, J. Guan, K. Fujimoto and W. R. Wagner, Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix, Biomaterials 27, 2006, 735. CrossrefGoogle Scholar

  • [17] M. Yunmin, L. Yuanyuan, C. Haiping and H. Qingxi, Application and Analysis of Biological Electrospray in Tissue Engineering, The open biomedical engineering journal 9, 2015, 133. Google Scholar

  • [18] L. Buttafoco, N. Kolkman, P. Engbers-Buijtenhuijs, A. Poot, P. Dijkstra, I. Vermes, et al., Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials 27, 2006, 724. CrossrefGoogle Scholar

  • [19] G. E. Wnek, M. E. Carr, D. G. Simpson and G. L. Bowlin, Electrospinning of nanofiber fibrinogen structures, Nano letters 3, 2003, 213. CrossrefGoogle Scholar

  • [20] M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes and G. L. Bowlin, Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model, Journal of Biomedical Materials Research Part A 81, 2007, 299. Web of ScienceCrossrefGoogle Scholar

  • [21] M. McManus, E. Boland, S. Sell, W. Bowen, H. Koo, D. Simpson, et al., Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction, Biomedical materials 2, 2007, 257. Google Scholar

  • [22] T. Telemeco, C. Ayres, G. Bowlin, G. Wnek, E. Boland, N. Cohen, et al., Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning, Acta biomaterialia 1, 2005, 377. Google Scholar

  • [23] J. A. Matthews, G. E. Wnek, D. G. Simpson and G. L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules 3, 2002, 232. CrossrefGoogle Scholar

  • [24] W.-J. Li, J. A. Cooper, R. L.Mauck and R. S. Tuan, Fabrication and characterization of six electrospun poly (-hydroxy ester)-based fibrous scaffolds for tissue engineering applications, Acta biomaterialia 2, 2006, 377. CrossrefGoogle Scholar

  • [25] B. M. Baker, A. O. Gee, R. B. Metter, A. S. Nathan, R. A.Marklein, J. A. Burdick, et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials 29, 2008, 2348. CrossrefWeb of ScienceGoogle Scholar

  • [26] J. L. Lowery, N. Datta and G. C. Rutledge, Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly ("-caprolactone) fibrous mats, Biomaterials 31, 2010, 491. Web of ScienceCrossrefGoogle Scholar

  • [27] A. K. Ekaputra, G. D. Prestwich, S. M. Cool and D.W. Hutmacher, Combining electrospun scaffoldswith electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs, Biomacromolecules 9, 2008, 2097. CrossrefGoogle Scholar

  • [28] M. C. Phipps,W. C. Clem, J. M. Grunda, G. A. Clines and S. L. Bellis, Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration, Biomaterials 33, 2012, 524. CrossrefGoogle Scholar

  • [29] J. B. Lee, S. I. Jeong, M. S. Bae, D. H. Yang, D. N. Heo, C. H. Kim, et al., Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration, Tissue Engineering Part A 17, 2011, 2695. Web of ScienceCrossrefGoogle Scholar

  • [30] G. Molea, F. Schonauer, G. Bifulco and D. D’Angelo, Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631), British journal of plastic surgery 53, 2000, 137. Google Scholar

  • [31] E. D. Boland, B. D. Coleman, C. P. Barnes, D. G. Simpson, G. E. Wnek and G. L. Bowlin, Electrospinning polydioxanone for biomedical applications, Acta Biomaterialia 1, 2005, 115. Google Scholar

  • [32] S. A. Sell, M. J. McClure, K. Garg, P. S. Wolfe and G. L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Advanced drug delivery reviews 61, 2009, 1007. Google Scholar

  • [33] M. Thieme, S. Agarwal, J. H. Wendorff and A. Greiner, Electrospinning and cutting of ultrafine bioerodible poly (lactideco- ethylene oxide) tri-and multiblock copolymer fibers for inhalation applications, Polymers for Advanced Technologies 22, 2011, 1335. Google Scholar

  • [34] C. P. Barnes, C. W. Pemble IV, D. D. Brand, D. G. Simpson and G. L. Bowlin, Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol, Tissue engineering 13, 2007, 1593. Web of ScienceGoogle Scholar

  • [35] D. J. Huey, J. C. Hu and K. A. Athanasiou, Unlike bone, cartilage regeneration remains elusive, Science 338, 2012, 917. Web of ScienceGoogle Scholar

  • [36] Z. Zhang, J. M. McCaffery, R. G. Spencer and C. A. Francomano, Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants, Journal of anatomy 205, 2004, 229. Google Scholar

  • [37] W.-J. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, et al., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells, Biomaterials 26, 2005, 599. Google Scholar

  • [38] L. Zhang, P. Su, C. Xu, J. Yang,W. Yu and D. Huang, Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems, Biotechnology letters 32, 2010, 1339. CrossrefWeb of ScienceGoogle Scholar

  • [39] J. Modl, L. Sether, V. Haughton and J. Kneeland, Articular cartilage: correlation of histologic zones with signal intensity at MR imaging, Radiology 181, 1991, 853. Google Scholar

  • [40] D. Hill, Stimulation of cartilage zones of the calf costochondral growth plate in vitro by growth hormone dependent rat plasma somatomedin activity, Journal of Endocrinology 83, 1979, 219. CrossrefGoogle Scholar

  • [41] R. Y. Kannan, H. J. Salacinski, K. Sales, P. Butler and A. M. Seifalian, The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review, Biomaterials 26, 2005, 1857. Google Scholar

  • [42] R. E. Unger, A. Sartoris, K. Peters, A. Motta, C. Migliaresi, M. Kunkel, et al., Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials, Biomaterials 28, 2007, 3965. CrossrefWeb of ScienceGoogle Scholar

  • [43] J. M. Sorrell, M. A. Baber and A. I. Caplan, A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells, Cells Tissues Organs 186, 2007, 157.Web of ScienceGoogle Scholar

About the article

Received: 2017-04-07

Accepted: 2017-09-17

Published Online: 2017-10-28

Published in Print: 2017-10-26

Citation Information: Electrospinning, Volume 1, Issue 1, Pages 111–121, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in