Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Electrospinning

Ed. by Uyar, Tamer

Open Access
Online
ISSN
2391-7407
See all formats and pricing
More options …

Solvent Retention in Electrospun Fibers Affects Scaffold Mechanical Properties

Anthony R. D’Amato
  • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, United States of America; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael T. K. Bramson
  • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David T. Corr
  • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Devan L. Puhl
  • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, United States of America; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ryan J. Gilbert
  • Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, United States of America; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jed Johnson
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/esp-2018-0002

Abstract

Electrospinning is a robust material fabrication method allowing for fine control of mechanical, chemical, and functional properties in scaffold manufacturing. Electrospun fiber scaffolds have gained prominence for their potential in a variety of applications such as tissue engineering and textile manufacturing, yet none have assessed the impact of solvent retention in fibers on the scaffold’s mechanical properties. In this study, we hypothesized that retained electrospinning solvent acts as a plasticizer, and gradual solvent evaporation, by storing fibers in ambient air, will cause significant increases in electrospun fiber scaffold brittleness and stiffness, and a significant decrease in scaffold toughness. Thermogravimetric analysis indicated solvent retention in PGA, PLCL, and PET fibers, and not in PU and PCL fibers. Differential scanning calorimetry revealed that polymers that were electrospun below their glass transition temperature (Tg) retained solvent and polymers electrospun above Tg did not. Young’s moduli increased and yield strain decreased for solventretaining PGA, PLCL, and PET fiber scaffolds as solvent evaporated from the scaffolds over a period of 14 days. Toughness and failure strain decreased for PGA and PET scaffolds as solvent evaporated. No significant differences were observed in the mechanical properties of PU and PCL scaffolds that did not retain solvent. These observations highlight the need to consider solvent retention following electrospinning and its potential effects on scaffold mechanical properties.

Keywords: Electrospun fibers; Solvent retention; mechanical characterization

References

  • [1] C. Zhang, X.Wang, E. Zhang, L. Yang, H. Yuan,W. Tu, H. Zhang, Z. Yin,W. Shen, X. Chen, Y. Zhang, H. Ouyang, An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering, Acta Biomater. 66 (2018) 141-156. doi: 10.1016/j.actbio.2017.09.036.CrossrefWeb of ScienceGoogle Scholar

  • [2] J. Baek, S. Sovani, W. Choi, S. Jin, S.P. Grogan, D.D. D’Lima, Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources, Tissue Eng. Part A. 24 (2017) 81-93. doi: 10.1089/ten.tea.2016.0205.CrossrefGoogle Scholar

  • [3] L. Jiang, L. Wang, N. Wang, S. Gong, L. Wang, Q. Li, C. Shen, L.-S. Turng, Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds, Appl. Surf. Sci. 427 (2018) 311-325. doi: 10.1016/j.apsusc.2017.08.005.Web of ScienceCrossrefGoogle Scholar

  • [4] B.M. Young, K. Shankar, B.P. Allen, R.A. Pouliot, M.B. Schneck, N.S. Mikhaiel, R.L. Heise, Electrospun Decellularized Lung Matrix Scaffold for Airway Smooth Muscle Culture, ACS Biomater. Sci. Eng. 3 (2017) 3480-3492. doi: 10.1021/acsbiomaterials.7b00384.CrossrefGoogle Scholar

  • [5] D.S. Puperi, A. Kishan, Z.E. Punske, Y. Wu, E. Cosgriff- Hernandez, J.L. West, K.J. Grande-Allen, Electrospun Polyurethane and Hydrogel Composite Scaffolds as Biomechanical Mimics for Aortic Valve Tissue Engineering, ACS Biomater. Sci. Eng. 2 (2016) 1546-1558. doi: 10.1021/acsbiomaterials.6b00309.CrossrefGoogle Scholar

  • [6] X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, X. Jing, Electrospinning of polymeric nanofibers for drug delivery applications, J. Controlled Release. 185 (2014) 12-21. doi: 10.1016/j.jconrel.2014.04.018. [7] S. Liu, G. Pan, G. Liu, J. das Neves, S. Song, S. Chen, B. Cheng, Z. Sun, B. Sarmento, W. Cui, C. Fan, Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy, J. Controlled Release. 264 (2017) 1-13. doi: 10.1016/j.jconrel.2017.08.011.CrossrefGoogle Scholar

  • [8] Y.-H. Hsu, C.-H. Chan, W.C. Tang, Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors, Sci. Rep. 7 (2017). doi: 10.1038/s41598-017-15698-7.Google Scholar

  • [9] K.T. Peter, A.J. Johns, N.V.Myung, D.M. Cwiertny, Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal, Water Res. 117 (2017) 207-217. doi: 10.1016/j.watres.2017.04.007.CrossrefWeb of ScienceGoogle Scholar

  • [10] B. Zhang, X. Yan, H.-W. He, M. Yu, X. Ning, Y.-Z. Long, Solventfree electrospinning: opportunities and challenges, Polym. Chem. 8 (2017) 333-352. doi: 10.1039/C6PY01898J.Google Scholar

  • [11] J. Nam, Y. Huang, S. Agarwal, J. Lannutti, Materials selection and residual solvent retention in biodegradable electrospun fibers, J. Appl. Polym. Sci. 107 (2008) 1547-1554. doi: 10.1002/app.27063.CrossrefWeb of ScienceGoogle Scholar

  • [12] A.R. D’Amato, N.J. Schaub, J.M. Cardenas, E. Franz, D. Rende, A.M. Ziemba, R.J. Gilbert, Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal, Fibers Polym. 18 (2017) 483-492. doi: 10.1007/s12221-017-1061-5.Web of ScienceCrossrefGoogle Scholar

  • [13] A.R. D’Amato, N.J. Schaub, J.M. Cardenas, A.S. Fiumara, P.M. Troiano, A. Fischetti, R.J. Gilbert, Removal of retained electrospinning solvent prolongs drug release from electrospun PLLA fibers, Polymer. 123 (2017) 121-127. doi: 10.1016/j.polymer.2017.07.008.CrossrefWeb of ScienceGoogle Scholar

  • [14] M. Rahman, C.S. Brazel, The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges, Prog. Polym. Sci. 29 (2004) 1223-1248. doi: 10.1016/j.progpolymsci.2004.10.001.CrossrefGoogle Scholar

  • [15] N.J. Schaub, A.R. D’Amato, A. Mason, D.T. Corr, E.Y. Harmon, M.R. Lennartz, R.J. Gilbert, The effect of engineered nanotopography of electrospun microfibers on fiber rigidity and macrophage cytokine production, J. Biomater. Sci. Polym. Ed. 28 (2017) 1303-1323. doi: 10.1080/09205063.2017.1321345.CrossrefWeb of ScienceGoogle Scholar

  • [16] N.J. Schaub, T. Britton, R. Rajachar, R.J. Gilbert, Engineered Nanotopography on Electrospun PLLA Microfibers Modifies RAW 264.7 Cell Response, ACS Appl. Mater. Interfaces. 5 (2013) 10173-10184. doi: 10.1021/am402827g.CrossrefGoogle Scholar

  • [17] C.E. Ayres, B. Shekhar Jha, H. Meredith, J.R. Bowman, G.L. Bowlin, S.C. Henderson, D.G. Simpson, Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach, J. Biomater. Sci. - Polym. Ed. 19 (2008) 603-621. doi: 10.1163/156856208784089643.Web of ScienceCrossrefGoogle Scholar

  • [18] K. Mubyana, R.A. Koppes, K.L. Lee, J.A. Cooper, D.T. Corr, The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats, J. Biomed. Mater. Res. A. 104 (2016) 2794-2800. doi: 10.1002/jbm.a.35821.CrossrefWeb of ScienceGoogle Scholar

  • [19] T. Stylianopoulos, C.A. Bashur, A.S. Goldstein, S.A. Guelcher, V.H. Barocas, Computational predictions of the tensile properties of electrospun fibre meshes: Effect of fibre diameter and fibre orientation, J. Mech. Behav. Biomed. Mater. 1 (2008) 326-335. doi: 10.1016/j.jmbbm.2008.01.003.Web of ScienceCrossrefGoogle Scholar

  • [20] M.J. McClure, S.A. Sell, C.E. Ayres, D.G. Simpson, G.L. Bowlin, Electrospinning-aligned and random polydioxanone- polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix, Biomed. Mater. 4 (2009) 055010. doi: 10.1088/1748-6041/4/5/055010.Web of ScienceGoogle Scholar

  • [21] F. Tihminlioglu, R.P. Danner, Solvent diffusion in amorphous polymers: Polystyrene-solvent systems, J. Polym. Sci. Part B Polym. Phys. 38 (2000) 1965-1974. doi: 10.1002/1099- 0488(20000801)38:15<1965::AID-POLB20>3.0.CO;2-P.CrossrefGoogle Scholar

  • [22] M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Rufleux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci. 90 (2003) 1731-1738. doi: 10.1002/app.12549.CrossrefGoogle Scholar

  • [23] M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate, Nature. 462 (2009) 433-441. doi: 10.1038/nature08602.CrossrefWeb of ScienceGoogle Scholar

  • [24] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell. 126 (2006) 677-689. doi: 10.1016/j.cell.2006.06.044.CrossrefGoogle Scholar

  • [25] S.-S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, B.-S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 1399-1409. doi: 10.1016/j.biomaterials.2005.08.016.CrossrefGoogle Scholar

  • [26] R. Capone, F.G. Quiroz, P. Prangkio, I. Saluja, A.M. Sauer, M.R. Bautista, R.S. Turner, J. Yang, M. Mayer, Amyloid-_- Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy, Neurotox. Res. 16 (2009) 1-13. doi: 10.1007/s12640-009-9033-1.CrossrefGoogle Scholar

  • [27] L. Huang, S.S. Manickam, J.R. McCutcheon, Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor, J. Membr. Sci. 436 (2013) 213-220. doi: 10.1016/j.memsci.2012.12.037.Web of ScienceCrossrefGoogle Scholar

  • [28] S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, S. Ramakrishna, Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane, Desalination. 279 (2011) 201-209. doi: 10.1016/j.desal.2011.06.009.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-05-31

Accepted: 2018-06-30

Published Online: 2018-09-25

Published in Print: 2018-09-01


Citation Information: Electrospinning, Volume 2, Issue 1, Pages 15–28, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2018-0002.

Export Citation

© by Anthony R. D’Amato et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in