Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Uyar, Tamer

Open Access
See all formats and pricing
More options …

Fabrication and Bioapplications of Magnetically Modified Chitosan-based Electrospun Nanofibers

Ivo Safarik
  • Corresponding author
  • Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
  • Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, Olomouc, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristyna Pospiskova
  • Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc, Omoluc, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Baldikova
  • Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ioanna Savva / Ladislau Vekas
  • Center for Fundamental and Advanced Technical Research, Romanian Academy - Timisoara Branch, Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oana Marinica
  • Research Center for Engineering of Systems with Complex Fluids, Politehnica University of Timisoara, Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eugenia Tanasa / Theodora Krasia-Christoforou
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/esp-2018-0003


The fabrication of magnetically modified electrospun nanocomposite fibers based on a naturally-derived biocompatible and biodegradable polysaccharide chitosan (CS) and the hydrophilic and biocompatible poly(vinylpyrrolidone) (PVP) is reported herein. The anchoring of magnetic nanoparticles (MNPs) onto the surfaces of the electrospun PVP/CS fibers was carried out by a post-magnetization process based on chemical coprecipitation, via immersing the produced fibrous mats in an aqueous solution containing Fe(II) and Fe(III) salts at appropriate molar ratios, followed by the addition of a weak base to yield MNPs. Electron microscopy revealed the presence of continuous micron and submicron fibers surface-decorated with MNPs. The magnetically modified PVP/CS fibers exhibited superparamagnetic behavior at ambient temperature. The magnetic fibrous nanocomposite carrier was employed for the immobilization of Saccharomyces cerevisiae cells and their use for sucrose hydrolysis, and Candida rugosa lipase and its use for artificial substrate hydrolysis.

Keywords: Magnetically responsive polymer-based fibrous nanocomposites; electrospinning; post-magnetization; chitosan; polyvinylpyrrolidone; superparamagnetism; enzymes and cells immobilization


  • [1] P. Supaphol, O. Suwantong, P. Sangsanoh, S. Srinivasan, R. Jayakumar, S.V. Nair, Electrospinning of biocompatible polymers and their potentials in biomedical applications, Advances in Polymer Science 246, 2012, 213-239.Web of ScienceGoogle Scholar

  • [2] J.Y. Yang, S.H. Zhan, N.Wang, X.M.Wang, Y. Li, Y. Li,W.Y.Ma, H.B. Yu, A mini review: Electrospun hierarchical nanofibers, Journal of Dispersion Science and Technology 31, 2010, 760-769.CrossrefGoogle Scholar

  • [3] D.G. Yu, L.M. Zhu, K. White, C. Branford-White, Electrospun nanofiber-based drug delivery systems, Health 1, 2009, 67-75.Google Scholar

  • [4] Y. Tian, M.Wu, R. Liu, Y. Li, D.Wang, J. Tan, R.Wu, Y. Huang, Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment, Carbohydrate Polymers 83, 2011, 743-748.Web of ScienceCrossrefGoogle Scholar

  • [5] X.Y. Ye, Z.M. Liu, Z.G. Wang, X.J. Huang, Z.K. Xu, Preparation and characterization of magnetic nanofibrous composite membranes with catalytic activity, Materials Letters 63, 2009, 1810-1813.CrossrefWeb of ScienceGoogle Scholar

  • [6] Z.-G. Wang, L.-S. Wan, Z.-M. Liu, X.-J. Huang, Z.-K. Xu, Enzyme immobilization on electrospun polymer nanofibers: An overview, Journal of Molecular Catalysis B: Enzymatic 56, 2009, 189-195.Web of ScienceCrossrefGoogle Scholar

  • [7] M.F. Canbolat, N. Gera, C. Tang, B. Monian, B.M. Rao, B. Pourdeyhimi, S.A. Khan, Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast, ACS AppliedMaterials&Interfaces 5 (19), 2013, 9349-9354.Google Scholar

  • [8] A.C. Mendes, K. Stephansen, I.S. Chronakis, Electrospinning of food proteins and polysaccharides, Food Hydrocolloids 68, 2017, 53-68.Web of ScienceGoogle Scholar

  • [9] R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V.A. Barathi, K.H.C. Limh, S. Ramakrishna, Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals, Chemical Society Reviews 44, 2015, 790-814.Google Scholar

  • [10] M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: A state of the art review, Internatioanal Journal of Food Microbiology 144, 2010, 51-63.Google Scholar

  • [11] K. Sun, Z.H. Li, Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning, Express Polymer Letters 5, 2011, 342-361.Web of ScienceCrossrefGoogle Scholar

  • [12] Y.S. Zhou, D.Z. Yang, X.M. Chen, Q. Xu, F.M. Lu, J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration, Biomacromolecules 9, 2008, 349-354.Web of ScienceCrossrefGoogle Scholar

  • [13] J.P. Chen, G.Y. Chang, J.K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing, Colloids and Surfaces A 313, 2008, 183-188.Google Scholar

  • [14] F. Croisier, C. Jerome, Chitosan-based biomaterials for tissue engineering, European Polymer Journal 49, 2013, 780-792.Web of ScienceGoogle Scholar

  • [15] M.G. Lancina, R.K. Shankar, H. Yang, Chitosan nanofibers for transbuccal insulin delivery, Journal of Biomedical Materals Research A 105, 2017, 1252-1259.Google Scholar

  • [16] R. Sedghi, A. Shaabani, Z. Mohammadi, F.Y. Samadi, E. Isaei, Biocompatible electrospinning chitosan nanofibers: A novel delivery system with superior local cancer therapy, Carbohydrate Polymers 159 (2017) 1-10.Web of ScienceGoogle Scholar

  • [17] W. Tighzert, A. Habi, A. Ajji, T. Sadoun, F.B.O. Daoud, Fabrication and characterization of nanofibers based on poly(lactic acid)/chitosan blends by electrospinning and their functionalization with phospholipase A1, Fibers and Polymers 18, 2017, 514-524.Web of ScienceGoogle Scholar

  • [18] N.M. Siqueira, K.C. Garcia, R. Bussamara, F.S. Both, M.H. Vainstein, R.M.D. Soares, Poly (lactic acid)/chitosan fiber mats: Investigation of effects of the support on lipase immobilization, International Journal of Biological Macromolecules 72, 2015, 998-1004.Web of ScienceGoogle Scholar

  • [19] P. Wen, K. Feng, H. Yang, X. Huang, M.H. Zong, W.Y. Lou, N. Li, H. Wu, Electrospun core-shell structured nanofilm as a novel colon-specific delivery system for protein, Carbohydrate Polymers 169, 2017, 157-166.Web of ScienceGoogle Scholar

  • [20] T.C. Mokhena, A.S. Luyt, Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres, Journal of Cleaner Production 156, 2017, 470-479.Google Scholar

  • [21] I. Savva, T. Krasia-Christoforou, Electrospun magnetoactive fibrous nanocomposites: Fabrication and applications in biomedicine. In: N.P. Sabbas (Ed.)Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine. Nova Science Publishers, 2014, pp. 163-200.Google Scholar

  • [22] H.T. Wang, Y.H. Chan, S.W. Feng, Y.J. Lo, N.C. Teng, H.M. Huang, Development and biocompatibility tests of electrospun poly-Llactide nanofibrous membranes incorporating oleic acid-coated Fe3O4, Journal of Polymer Engineering 34, 2014, 241-245.Google Scholar

  • [23] L. Li, G. Yang, J. Li, S. Ding, S. Zhou, Cell behaviors on magnetic electrospun poly-d, l-lactide nanofibers, Materials Science and Engineering C 34, 2014, 252-261.CrossrefGoogle Scholar

  • [24] F. Sharifi, A.C. Sooriyarachchi, H. Altural, R. Montazami, M.N. Rylander, N. Hashemi, Fiber based approaches as medicine delivery systems, ACS Biomaterials Science & Engineering 2, 2016, 1411-1431.CrossrefWeb of ScienceGoogle Scholar

  • [25] L.G.Wang, M.Wang, P.D. Topham, Y. Huang, Fabrication ofmagnetic drug-loaded polymeric composite nanofibres and their drug release characteristics, RSC Advances 2, 2012, 2433-2438.Google Scholar

  • [26] I. Savva, A.D. Odysseos, L. Evaggelou, O. Marinica, E. Vasile, L. Vekas, Y. Sarigiannis, T. Krasia-Christoforou, Fabrication, characterization, and evaluation in drug release properties of magnetoactive poly(ethylene oxide)-poly(L-lactide) electrospun membranes, Biomacromolecules 14, 2013, 4436-4446.CrossrefGoogle Scholar

  • [27] T.C. Lin, F.H. Lin, J.C. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells, Acta Biomaterialia 8, 2012, 2704-2711.Web of ScienceGoogle Scholar

  • [28] T.C.Lin, F.H. Lin, J.C. Lin, In vitro characterization of magnetic electrospun IDA-grafted chitosan nanofiber composite for hyperthermic tumor cell treatment, Journal of Biomaterials Science, Polymer Edition 24, 2013, 1152-1163.Web of ScienceCrossrefGoogle Scholar

  • [29] I. Savva, A. S. Kalogirou, A. Chatzinicolaou, P. Papaphiippou, A. Pantelidou, E. Vasile, Eu. Vasile, P.A. Koutentis, T. Krasia-Christoforou, PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports, RSC Advances, 4, 2014, 44911-44921.Google Scholar

  • [30] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller,Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews 108, 2008, 2064-2110.Web of ScienceGoogle Scholar

  • [31] N. Bhattarai, D. Edmondson, O. Veiseh, F.A. Matsen, M.Q. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials 26, 2005, 6176-6184.CrossrefGoogle Scholar

  • [32] I. Savva, M. Efstathiou, T. Krasia-Christoforou, I. Pashalidis, Adsorptive removal of U(VI) and Th(IV) from aqueous solutions using polymer-based electrospun PEO/PLLA fibrous membranes, Journal of Radioanalytical and Nuclear Chemistry 298, 2013, 1991-1997.Web of ScienceGoogle Scholar

  • [33] S.R. Mao, X.T. Shuai, F. Unger, M. Simon, D.Z. Bi, T. Kissel, The depolymerization of chitosan: effects on physicochemical and biological properties, International Journal of Pharmaceutics 281, 2004, 45-54.Google Scholar

  • [34] A.E. Jablonski, A.J. Lang, S. Vyazovkin, Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization, Thermochimica Acta 474 (2008) 78-80.Web of ScienceGoogle Scholar

  • [35] R.W. Chantrell, J. Popplewell, S.W. Charles, Measurements of particle-size distribution parameters in ferrofluids, IEEE Transactions on Magnetics 14, 1978, 975-977.CrossrefGoogle Scholar

  • [36] R.E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc., 2014.Google Scholar

About the article

Received: 2018-06-06

Accepted: 2018-08-04

Published Online: 2018-09-25

Published in Print: 2018-09-01

Citation Information: Electrospinning, Volume 2, Issue 1, Pages 29–39, ISSN (Online) 2391-7407, DOI: https://doi.org/10.1515/esp-2018-0003.

Export Citation

© by Ivo Safarik et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tejas V. Shah and Dilip V. Vasava
e-Polymers, 2019, Volume 19, Number 1, Page 385
Christos Christou, Katerina Philippou, Theodora Krasia-Christoforou, and Ioannis Pashalidis
Carbohydrate Polymers, 2019, Volume 219, Page 298

Comments (0)

Please log in or register to comment.
Log in