Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

1 Issue per year

Open Access
Online
ISSN
2300-7591
See all formats and pricing
More options …

Capacity of Fractographic Analysis for Load-Time History Reconstruction and Fatigue Crack Growth Rate Estimation for the 2024-T3 Aluminium Alloy

Zdzisław Bogdanowicz / Dorota Kocańda / Janusz Torzewski
Published Online: 2010-09-23 | DOI: https://doi.org/10.2478/v10164-010-0002-1

Capacity of Fractographic Analysis for Load-Time History Reconstruction and Fatigue Crack Growth Rate Estimation for the 2024-T3 Aluminium Alloy

The subject of the paper is the considerations for the feasibility of load time history reconstruction on the basis of microfracture analysis for a failed component made of 2024-T3 aluminium alloy that operates under variable amplitude loading. For this goal three different variable amplitude load sequences with single and multiple overloads and underloads were applied to investigate crack growth rate and to examine the images of fatigue striations on the fracture surface of a component. These loads are employed when simulating the fatigue crack behaviour in aeronautical alloys. Microfracture analysis was also used either for learning the interaction of variable amplitude loading for crack growth rate in 2024-T3 alloy or for establishing the relation between surface crack and crack depth growth.

  • Kocańda, S. (1990). Metal Fatigue. Part III in Experimental Methods in Mechanics of Solids. Amsterdam-Oxford-New York: Elsevier.Google Scholar

  • Kocańda, D., Kocańda, S., & Torzewski, J. (2002). Fatigue crack growth rate in 2024-T3 aluminium alloy. In: Proceedings of the 19th Symposium on Fatigue and Fracture Mechanics, April 2002, (195-202). Bydgoszcz: ATR.Google Scholar

  • Wanhill, R. J. H. (2002). Flight simulation fatigue crack growth guidelines. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 573-584. Stockholm, Sweden.Google Scholar

  • Spence, S. H., Williams, N. M., Stonham, A. J., Bache, M. R., Ward, A. R., Evans, W. J., Hay, D., Urbani, C., Crawford, B. R., Loader, C., & Clark, G. (2002). Fatigue in the presence of corrosion pitting in an aerospace aluminium alloy. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 701-708. Stockholm, Sweden.Google Scholar

  • Katoh, Y., Nakayama, H., & Tanaka, T. (2002). Fatigue crack growth behaviour of aluminium alloy under three-step varying load. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 2(5), 1459-1466. Stockholm, Sweden.Google Scholar

  • Sunder, R. (2002). An explanation for the residual stress effect in metal fatigue. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 5(5), 3339-3350. Stockholm, Sweden.Google Scholar

  • Gangloff, R. P. (2002). Environment sensitive fatigue crack tip process and propagation in aerospace aluminium alloys. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, Vol. 5(5), 3401-3430. Stockholm, Sweden.Google Scholar

  • Forth, S. C., Keat, W. D., & Fawrow, L. H. (2002). Experimental and computational investigation of three-dimensional mixed-mode fatigue. Fatigue and Fracture of Engineering Materials and Structures, 25(1), 3-15.Google Scholar

  • Schijve, J. (2002). Fatigue of structures and materials in the 20th century and the state of the art. In: Proceedings of the 14th Bienniel Conference on Fracture -ECF 14, 2002, Vol. III/III, 211-262.Google Scholar

  • Schijve, J. (2001). Fatigue of structures and materials, Dordrecht, Boston, London: Kluver Academic Publishers.Google Scholar

  • Zhang, X. P., Wang, C. H., Ye, L., & Mai, W. (2002). In situ investigation of small fatigue crack growth in poly-crystal and single-crystal aluminium alloys. Fatigue and Fracture of Engineering Materials and Structures, 25(2), 141-150.Google Scholar

  • Kermanidis, A. T., & Pantelakis, S. G. (2001). Fatigue crack growth analysis of 2024-T3 aluminium specimens under aircraft service spectra. Fatigue and Fracture of Engineering Materials and Structures, 24, 699-710.Google Scholar

  • Ranganathan, N. (2002). Certain aspects of variable amplitude fatigue. In: Proceedings of the 8th International Fatigue Congress, 2-7 June, 2002, 1(5), 613-621. Stockholm, Sweden.Google Scholar

  • Brockenbrough, J. R., Bucci, R. J., Kulak, M., Zonker, H. R., Bray, G. H., Heinimann, M. B., & Newman, J.C. (2003). Crack growth prediction methods for spectrum loading to support fatigue and durability damage tolerance evaluation. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May 2003, Vol. 1, pp. 14. Lucerne, Switzerland.Google Scholar

  • Goncalves, W., Pramono, A., & Chaves, C. E. (2003). Embraer New Family of Jets-Meeting the Current Fatigue and Damage Tolerance Requirements. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May, 2003, Vol 1, pp. 21. Lucerne, Switzerland.Google Scholar

  • Lazzeri, L., & Ratti, G. (2002). Fatigue crack propagation in thin sheets under typical helicopter spectra. In: Proceedings of the 8th International Fatigue Congress, 2-7 June 2002, 1(5), 585-592. Stockholm, Sweden.Google Scholar

  • Iyyer, N. S., Kwon, Y. S., & Phan, N. (2003). P-3C crack growth life predictions under spectrum loading. In: Proceedings of the 22nd Symposium of International Committee on Aeronautical Fatigue - Fatigue of Aeronautical Structures as an Engineering Challenge, 5-9 May 2003, Vol. 2, pp. 18. Lucerne, Switzerland.Google Scholar

  • Skorupa, M. (1996). Empirical trends and prediction models for fatigue crack growth under variable amplitude loading. Petten, Netherlands: Energy Research Foundation. (ECN-R-96-007)Google Scholar

  • Ivanova, V., & Shaniavsky, A. (1998). Quantitative fractography. Metallurgy Press.Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2004). Reconstruction of fatigue crack growth rate for 2024-T3 aluminium alloy sheet on the basis of fractographic analysis. The Archive of Mechanical Engineering, 51(3), 361-376.Google Scholar

  • Hertzberg, R. (1983). Deformation and fracture mechanics of engineering materials, John Wiley & Sons Inc., 2nd revised edition.Google Scholar

  • Karasiewicz, T., Bogdanowicz, Z., & Polanski, J. (2007). The influence of amplitude and load rate on the amount of energy dissipation for aluminium alloy subjected to cyclic torsion. Bulletin of Military University of Technology WAT, 56(4). Warsaw, Poland.Google Scholar

  • Szymczyk, E., Jachimowicz, J., & Bogdanowicz, Z. (2007). Investigations of fatigue crack initiation in rivet-joints. Transactions of the Kielce University of Technology. Mechanics, 4. 125-126. (in Polish). Warsaw, Poland.Google Scholar

  • Bogdanowicz, Z. (2008). Elaboration of the method of aeronautical skin joints lifetime determination taking into account materials and technological features. Sc. Project, (in Polish). Warsaw, Poland: Military University of Technology.Google Scholar

About the article


Published Online: 2010-09-23

Published in Print: 2009-07-26


Citation Information: Fatigue of Aircraft Structures, ISSN (Online) 2300-7591, DOI: https://doi.org/10.2478/v10164-010-0002-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in