Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

1 Issue per year

Open Access
Online
ISSN
2300-7591
See all formats and pricing
More options …

Deterministic Approach to Predicting the Fatigue Crack Growth in the 2024-T3 Aluminum Alloy Under Variable Amplitude Loading

Dorota Kocańda / Janusz Torzewski
Published Online: 2010-09-23 | DOI: https://doi.org/10.2478/v10164-010-0010-1

Deterministic Approach to Predicting the Fatigue Crack Growth in the 2024-T3 Aluminum Alloy Under Variable Amplitude Loading

The paper presents the attempt to predict fatigue crack growth rate in a component subjected to variable amplitude loading containing overload-underload cycles. For this goal in a deterministic approach the modified Willenborg retardation model was applied. To provide experimental data the research into fatigue crack growth for 2024-T3 aluminum alloy sheet CCT specimens under LHL type block program loading with multiple overload-underload cycles was developed. The microfractographic analysis of fatigue fractures with the use of the transmission electron microscope (TEM) made it possible to trace the effect of block program loading on the crack growth rate. The knowledge of the affection of a particular overload-underload cycle or a block of these cycles on crack rate on the basis of microfractographic analysis was utilized for assessing the equivalent loading for the LHL block program. The diagrams that presented the crack growth rate both on the surface and inside the aluminum alloy sheet was performed. The crack growth rate inside the sheet was estimated on the basis of the striation spacing analysis.

Keywords: aluminum alloy; fatigue crack growth rate; microfractographic analysis; Willenborg retardation model

  • Kocanda, S. (1978). Fatigue Failure of Metals. Sijthoff&Noordhoff Int. Publishers.Google Scholar

  • Kocańda, S. (1985). Zmęczeniowe pękanie metali [in Polish], 3rd edition, Warszawa: WNT.Google Scholar

  • Schijve, J. (2001). Fatigue of Structures and Materials. Kluwer Academic Publishers.Google Scholar

  • Skorupa, M. (1996 June). Empirical Trends and Prediction Models for Fatigue Crack Growth Under Variable Amplitude Loading. Petten, Netherlands: Netherlands Energy Research Foundation. (ECN_R-96-007)Google Scholar

  • Skorupa, M. (1998). Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading - a Literature Review. Part I: Empirical Trends. Fatigue and Fracture of Engineering Materials and Structures. 21(8), 987-1006.Google Scholar

  • Kermanidis, A. T., & Pantelakis, S. G. (2001). Fatigue Crack Growth Analysis of 2024-T3 Aluminium Specimens Under Aircraft Service Spectra. Fatigue and Fracture of Engineering Materials and Structures. 24(10), 699-710.Google Scholar

  • Yisheng, W., & Schijve, J. (1995). Fatigue Crack Closure Measurements on 2024-T3 Sheet Specimens. Fatigue and Fracture of Engineering Materials and Structures. 18(9). 917-921.Google Scholar

  • Ellyin, F., & Wu, J. (1999). An Numerical Investigation on the Effect of an Overload on Fatigue Crack Opening and Closure Behaviour. Fatigue and Fracture of Engineering Materials and Structures. 22(10), 835-848.Google Scholar

  • Yasniy, P., & Pyndus, Y. U. (2000). Prediction of fatigue crack growth rate after single overload at different stress ratios. In: Proceedings of the 14th Biennial Conference on Fracture. Cracow, Poland, 8-13 September 2002. 3(3). 609-616.Google Scholar

  • Schijve, J., Skorupa, M., Skorupa, A., Machniewicz, T., & Gruszczyński, P. (2004). Fatigue crack growth in the aluminium alloy D16 under constant and variable amplitude loading. International Journal of Fatigue. 26(1), 1-15.Google Scholar

  • Lazzeri, L., & Ratti, G. (2002). Fatigue crack propagation in thin sheets under typical helicopter spectra. In Blom A. F. (Eds.) The 8th International Fatigue Congress, 2-7 June 2002. 1(5). 585-592. Stockholm, Sweden.Google Scholar

  • Iyyer, N. S., Kwon, Y. S., & Phan, N. (2003). P-3C crack growth life predictions under spectrum loading. In: Proceedings of the 22nd International Committee on Aeronautical Fatigue, 5-9 May 2003, ICAF: Fatigue of Aeronautical Structures as an Engineering Challenge, 2, pp.18. Lucerne, Switzerland.Google Scholar

  • Skorupa, M. (1996). Empirical trends and prediction models for fatigue crack growth under variable amplitude loading. Petten, Netherlands: Energy Research Foundation. (ECN-R-96-007)Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2004). Fatigue crack growth rate in an aircraft aluminium alloy under programmed loading and the capability of its reconstruction [in Polish]. Military University of Technology WAT Bulletin, 2(3), 69-83.Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2004). Fatigue crack growth rate in the 2024-T3 aluminium alloy under programmed loading and the capability of its reconstruction [in Polish]. In XXI Symposium on Experimental Mechanics of Solids, 2004, 23-44.Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2004). Reconstruction of fatigue crack growth rate for the 2024-T3 aluminium alloy sheet on the basis of fractographic analysis. The Archive of Mechanical Engineering, 3, 361-375.Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2005). Comparative study of fatigue crack growth rate in aircraft aluminium alloys under programmed loadings [in Polish]. In: Proceedings of the 3rd Symposium on Damage Mechanics of Materials and Structures, July 2005, Bialystok University of Technology, 153-158.Google Scholar

  • Kocanda, D., Kocanda, S., & Torzewski, J. (2006). Variable amplitude load interaction in fatigue crack growth for the 2024-T3 aluminium alloy. In: Proceedings of the 16th European Conference of Fracture, ECF-16, Greece 2006, 177-178 (abstract), full paper on CD.Google Scholar

  • Kocanda, D., Kocanda, S., Torzewski, J., & Werner, K. (2004). Plastic zones associated the fatigue cracking in aircraft aluminium alloy under programmed. Fatigue and Fracture Mechanics [in Polish]. In: Proceedings of the XX Symposium on Fatigue and Fracture Mechanics, University of Technology and Life Sciences, Bydgoszcz, 2004, 187-194.Google Scholar

  • Kocanda, S., & Szala, J. (1997). Foundations in fatigue calculations. PWN, Warszawa.Google Scholar

  • Dowling, N. E. (1999). Mechanical behaviour of materials, 2nd edition, Prentice Hall.Google Scholar

  • Fuchs, H. O., & Stephens, R. I. (1980). Metal fatigue in engineering. John Wiley & Sons.Google Scholar

  • Rama Chandra Murthy A., Palani, G. S., & Nagesh, R. Iyer (2005). An improved Wheeler model for remaining life prediction of cracked plate panels under tensile-compressive overloading. SID, 1(3), 203-213.Google Scholar

  • Bochenek, A. (1998). Elements of fracture mechanics. Częstochowa University of Technology.Google Scholar

  • Torzewski, J. (2007). Fatigue crack growth rate in the 2024-T3 aluminum alloy under programmed loadings and the capability of its reconstruction on the basis of fractographic analysis. Ph.D. Thesis, Military University of Technology WAT.Google Scholar

About the article


Published Online: 2010-09-23

Published in Print: 2009-07-26


Citation Information: Fatigue of Aircraft Structures, ISSN (Online) 2300-7591, DOI: https://doi.org/10.2478/v10164-010-0010-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in