Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

1 Issue per year

Open Access
Online
ISSN
2300-7591
See all formats and pricing
More options …

Experimental and Numerical Crack Initiation Analysis of the Compressor Blades Working in Resonance Conditions

Lucjan Witek
Published Online: 2011-08-25 | DOI: https://doi.org/10.2478/v10164-010-0045-3

Experimental and Numerical Crack Initiation Analysis of the Compressor Blades Working in Resonance Conditions

This paper presents the results of a complex experimental and numerical crack initiation analysis of the helicopter turbo-engine compressor blades subjected to vibrations. A nonlinear finite element method was utilized to determine the stress state of the blade during the first mode of transverse vibration. In this analysis, the numerical models without defects as well as those with V-notches were defined. The quality of the numerical solution was checked by the convergence analysis. The obtained results were next used as an input data into crack initiation (ε-N) analyses performed for the load time history equivalent to one cycle of the transverse vibration. In the fatigue analysis, the different methods such as: Neuber elastic-plastic strain correction, linear damage summation and Palmgreen-Miner rule were utilized. As a result of ε-N analysis, the number of load cycles to the first fatigue crack appearing in the compressor blades was obtained. Moreover, the influence of the blade vibration amplitude on the number of cycles to the crack initiation was analyzed. Values of the fatigue properties of the blade material were calculated using the Baumel-Seeger and Muralidharan methods. The influence of both the notch radius and values of the UTS of the blade material on the fatigue behavior of the structure was also considered. In the last part of the work, the finite element results were compared with the results of experimental vibration HCF tests performed for the compressor blades.

  • Lourenço, N.J., Graça, M.L.A., Franco, L.A.L. & Silva, O. M. M. (2008). Fatigue failure of a compressor blade. Engineering Failure Analysis. 15(6), 1150 - 4.CrossrefGoogle Scholar

  • Kermanpur, A., Sepehri Ami, H., Ziaei-Rad, S., Nourbakhshnia, N. & Mosaddeghfar, M. (2008). Failure analysis of Ti6Al4V gas turbine compressor blades. Engineering Failure Analysis. 15(6), 1052 - 64.CrossrefGoogle Scholar

  • Silveira, E., Atxaga, G. & Irisarri, A.M. (2008). Failure analysis of a set of compressor blades. Engineering Failure Analysis. 15(6), 666 - 674.CrossrefGoogle Scholar

  • Poznanska, A., Sniezek, M. & Wierzbinska, M. Pitting corrosion - main factor generating fracture of the compressor of aeroengine blades under operation. In: Proceedings of IX conference. Turbomachinery, Rzeszow; 2003 [in Polish].Google Scholar

  • Witek, L.; Wierzbińska, M. & Poznańska, A. (2009). Fracture analysis of compressor blade of a helicopter engine. Engineering Failure Analysis. 16(5), 1616-1622.CrossrefGoogle Scholar

  • Witek, L. (2009). Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration. Engineering Failure Analysis. 16(7), 2163-2170.Web of ScienceCrossrefGoogle Scholar

  • Troshchenko, V.T. & Prokopenko, A.V. (2000). Fatigue strength of gas turbine compressor blades. Engineering Failure Analysis. 7(3), 209-220.CrossrefWeb of ScienceGoogle Scholar

  • Myounggu Park, Young-Ha Hwang, Yun-Seung Choi, Tae-Gu Kim. (2002). Analysis of a J69-T-25 engine turbine blade fracture. Engineering Failure Analysis. 9(5), 593 - 601.Google Scholar

  • Kyo-Soo Song, Seon-Gab Kim, Daehan Jung, Young-Ha Hwang. (2007). Analysis of the fracture of a turbine blade on a turbojet engine. Engineering Failure Analysis. 14(5), 877 - 883.Google Scholar

  • Vardar, N. & Ekerim, A. (2007). Failure analysis of gas turbine blades in a thermal power plant. Engineering Failure Analysis. 14(4), 743 - 749.CrossrefGoogle Scholar

  • Xiaolei Xu & Zhiwei Yu. (2007). An investigation on the failed blades in a locomotive turbine. Engineering Failure Analysis. 14(7), 1322-1328.Google Scholar

  • Yu-jiang Xie, Mao-cai Wang, Ge Zhang, Min Chang. (2006). Analysis of superalloy turbine blade tip cracking during service. Engineering Failure Analysis. 13(8), 1429-1436.Google Scholar

  • Witek, L. (2006). Failure analysis of turbine disc of an aero engine. Engineering Failure Analysis. 13(1), 9 - 17.CrossrefGoogle Scholar

  • Witek, L., Kowalski, T. & Mamrowicz, J. Numerical stress and fatigue analysis of the first stage of turbine for helicopter engine. In: Proceedings of International Conference on Aeronautical Fatigue, 16-18 May 2007. Napoli.Google Scholar

  • MSC Corporation (2004). MSC-PATRAN User_s Manual, ver. 2004. Los Angeles: MSC Corporation.Google Scholar

  • Michailov, P.B. (1961). Sprawocznik po Metaliczeskim Matierialam Turbino-i Motorostroenija. Petersburg.Google Scholar

  • Abaqus Inc. (2007). ABAQUS Users Manual, ver. 6.7. Abaqus Inc.Google Scholar

  • Kocanda S. & Szala J. (1985). Podstawy obliczeń zmęczeniowych. Warszawa: PWN (in Polish).Google Scholar

  • MSC Corporation (2000). MSC Fatigue 9.0 Users Manual - Fatigue theory, Los Angeles: MSC Corporation.Google Scholar

  • Meggiolaro M.A. & Castro, J.T.P. (2004). Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue. 26(2004), 463 - 476.CrossrefGoogle Scholar

About the article


Published Online: 2011-08-25

Published in Print: 2011-08-01


Citation Information: Fatigue of Aircraft Structures, ISSN (Online) 2300-7591, DOI: https://doi.org/10.2478/v10164-010-0045-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in