Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

1 Issue per year

Open Access
Online
ISSN
2300-7591
See all formats and pricing
More options …

The MMM Expert System: From a Reference Signal to The Method Validation

Mirosław Witoś
Published Online: 2013-04-30 | DOI: https://doi.org/10.2478/v10164-012-0064-3

Abstract

This paper presents the first step in the methodological approach to the validation of the metal magnetic memory (MMM) method in the non-destructive testing (NDT) applications and in the systems used for diagnosis of early stages of material fatigue in mechanical constructions (structural health monitoring, SHM, and prognosis health management, PHM). The study is focused on the properties of the external natural source of magnetisation of the object under MMM examination and the impact of the magnetisation components. The precise data obtained from measurements of the Earth's geomagnetism (from ground stations and satellites) and the revised model of the Earth's magnetism can be applied in order to calibrate high sensitivity magnetic field sensors, validate the measurement results and extend the functional capacity of the MMM method.

Keywords : geomagnetic field; magneto-mechanical effects; numerical model; SHM

  • [1] Birss, R.R. & Faunce, C.A. (1971). Stress-Induced Magnetization in Small Magnetic Fields, Journal de Physique, Colloque C I, supplément au no 2-3, Tome 32, Février-Mars, page C 1 - 686-688.Google Scholar

  • [2] Altherton, D.L. & Jiles, D.C. (1986): Effects of stress on magnetization, NDT International, Vol. 19(1), pp. 15-19.CrossrefGoogle Scholar

  • [3] Robertson, I.M. (1991): Magneto-Elastic Behaviour of Steels for Naval Applications, MRL Technical Report, MRL-TR-90-27, DSTO Materials Research Laboratory.Google Scholar

  • [4] Tae-Kyu Lee, Morris J.W., Seungkyun Lee, Jr. & Clarke, J. Detection of fatigue damageprior to crack initiation with scanning SQUID microscopy. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 25.Google Scholar

  • [5] Witoś, M. (2011). Increasing the durability of turbine engine components through activediagnostics and control. Research works of AFIT, Issue 29 (in polish).Google Scholar

  • [6] Vlasov, V.T. & Dubov, A.A. (2004). Physical bases of the metal magnetic memory method, ZAO Tisso Publishing House.Google Scholar

  • [7] Liu Q., Lin J., Chen M., Wang C., Wang G., Zhao F.Z., Geng Y., Zheng Ch. (2008). A Studyof Inspecting the Stress on Downhole Metal Casing in Oilfields with Magnetic MemoryMethod, Proc. of 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.Google Scholar

  • [8] Hu B., Chen G., Shen G., Li L., Chen X. (2008). Study on Magnetic Memory Method(MMM) for Fatigue Evaluation, Proc. of 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.Google Scholar

  • [9] Zhong L., Li L., Chen X. (2008). Progress in Nondestructive Evaluation of StressConcentration with MMM Method, Proc. of 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.Google Scholar

  • [10] Roskosz, M. (2011). Metal magnetic memory testing of welded joints of ferritic and austenitic steels, NDT&E International, Vol. 44, pp. 305-310. DOI:10.1016/j.ndteint.2011.01.008.Web of ScienceCrossrefGoogle Scholar

  • [11] Roskosz M., Rusin A. & Kotowicz J. (2010): The metal magnetic memory method in the diagnostics of power machinery components, Journal of Achievements in Materials andManufacturing Engineering, Vol. 43(1), pp. 362-370.Google Scholar

  • [12] Viana A., Rouve L-L., Cauffet G. & Coulomb J-L. (2011). Analytical Model for ExternalInduction Variations of a Ferromagnetic Cylinder Undergoing High Mechanical Stresses ina Low Magnetic Field of Any Orientation. IEEE Transactions on Magnetics, Vol. 47, No. 5Google Scholar

  • [13] Dobmann, G. Physical basics and industrial applications of 3MA - micromagneticmultiparameter microstructure and stress analysis, Fraunhofer IZFP, Saarbrücken, Germany.Google Scholar

  • [14] Burrows, C.W. (1916). Correlation of the magnetic and mechanical properties of steel, Scientific Papers of the Bureau of Standards, No 272, Government Printing Office, Washington.Google Scholar

  • [15] Newnham, R. (2005). Properties of materials. Anisotropy, symmetry, structure. Oxford University Press.Google Scholar

  • [16] Fonteyn, K.A. (2010). Energy-based magneto-mechanical model for electrical steel sheets. Doctoral Dissertation, Aalto University, TKK Dissertations 234.Google Scholar

  • [17] Dapino, M.J. (1999). Nonlinear and hysteretic magnetomechanical model formagnetostrictive transducers. PhD Dissertation, Iowa State University.Google Scholar

  • [18] Gallaudet, E.F. (1896). Relation between length, elasticity and magnetization of iron andnickel wires. PhD Dissertation, Johns Hopkins University.Google Scholar

  • [19] Nagaoka H. & Honda K. (1898-1925). Researches on Magnetostriction. The Journal of the College of Science, Imperial University of Tokyo, Section 353.Google Scholar

  • [20] The Journal of the College of Science, Imperial University of Tokyo 1901-1908, Vol. XVI, Article 8-10, 12-14.Google Scholar

  • [21] Hobbie, Jr. J.R. (1922). Magnetostriction with small magnetizing fields. Physical Review, Vol. XIX, No. 5.Google Scholar

  • [22] Lee, E.W. (1955). Magnetostriction and Magnetomechanical Effects. Rep. Prog. Phys., Vol. 18, p. 184 -229.Google Scholar

  • [23] Tomohiro Yamasaki, Shinji Yamamoto, Masahiko Hirao (1996). Effect of applied stresses on magnetostriction of low carbon steel. NDT&E International, Vol. 29(5), pp. 263-268.Google Scholar

  • [24] Smith C.M., Geo. W. Sherman, Jr. (1914). A study of the magnetic qualities of stressed iron and steel. Phys. Rev., N. S., 4, pp. 267-273.CrossrefGoogle Scholar

  • [25] Sandford, R.L. (1924). Effect of stress on the magnetic properties of steel wire. ScientificPapers of the Bureau of Standards, Vol. 19, No 469-497.Google Scholar

  • [26] Kocańda, S. (1957). Wykrywanie wad metali metodą magnetyczną. PWN Warszawa.Google Scholar

  • [27] http://www.ndt.net/Google Scholar

  • [28] http://www.ibgndt.com/Google Scholar

  • [29] Witoś, M. (2012). The reference signal of geomagnetic field for MMM expert systems. KeyEngineering Materials, Vol. 518, pp. 384-395. DOI:10.4028/www.scientific.net/KEM.518.384CrossrefGoogle Scholar

  • [30] Jankowski J. & Sucksdorff Ch. (1996). Guide for magnetic measurement and observatorypractice, IAGA, Warsaw.Google Scholar

  • [31] Maus S. (2006). Plane and spherical harmonic representations of the geomagnetic field, CIRES, University of Colorado, February 16, 2006.Google Scholar

  • [32] Maus S., Macmillan S., McLean S., Hamilton B., Thomson A., Nair M., Rollins C. (2010). The US/UK World Magnetic Model for 2010-2015, NOAA Technical ReportNESDIS/NGDC.Google Scholar

  • [33] Sabaka T.J. Earth’s dynamic magnetic field. The state of the art comprehensive model. GSFCGoogle Scholar

  • [34] http://www.iugg.org/IAGAGoogle Scholar

  • [35] http://www.ngdc.noaa.gov/IAGA/vmodGoogle Scholar

  • [36] http://www.ngdc.noaa.gov/geomag/WMM/Google Scholar

  • [37] Pharaoh T. & TESZ colleagues: Trans-European Suture Zone. Phanerozoic Accretion andthe Evolution of Contrasting Continental Lithospheres. http://www.geofys.uu.seGoogle Scholar

  • [38] http://www.ngdc.noaa.gov/geomag/EMM/index.htmlGoogle Scholar

  • [39] http://www.geomag.us/models/HDGM.htmlGoogle Scholar

  • [40] The largest magnetic storm on record. The “Carrington Event” of August 27th to September7th 1859, recorded at Greenwich Observatory, London, British Geological Survey.Google Scholar

  • [41] http://www.intermagnet.orgGoogle Scholar

  • [42] http://www.swpc.noaa.govGoogle Scholar

  • [43] Davis P.M., Pierce D.R., McPherron R.L., Dzurisin D., Murray Th., Malcom J.S., Johnston S. & Mueller R. (1984). A volcanomagnetic observation on Mount St. Helens, Washington, Geophysical Research Letters, Vol. 11(3), pp 233-236.Google Scholar

  • [44] Yasunori Nishida, Mitsuru Utsugi, Toru Mogi (2007). Tectonomagnetic study in the eastern part of Hokkaido, NE Japan (II): Magnetic fields related with the 2003 Tokachi-oki earthquake and the 2004 Kushiro-oki earthquake. Earth Planets Space, Vol. 59, pp. 1181-1186.Web of ScienceGoogle Scholar

  • [45] Shu-Kun Hsu, Yi-Ching Yeh, Chung-Liang Lo, Andrew Tien-Shun Lin, and Wen-Bin Doo (2008). Link between Crustal Magnetization and Earthquakes in Taiwan. Terr. Atmos. Ocean. Sci., Vol. 19(5), pp. 445-450, DOI: 10.3319/TAO.2008.19.5.445(T).CrossrefGoogle Scholar

  • [46] Meirav Bass (2010). Investigation of geodynamic phenomena from high-resolution magneticmeasurements. M.Sc. Thesis to the Department of Geophysics and Planetary Sciences, Tel Aviv University, Jaruselem.Google Scholar

  • [47] Benoît St-Louis [ed.] (2011). Intermagnet technical reference manual, INTERMAGNET c/o British Geological Survey Murchison House, Edinburgh.Google Scholar

About the article

Published Online: 2013-04-30

Published in Print: 2012-12-01


Citation Information: Fatigue of Aircraft Structures, ISSN (Online) 2300-7591, DOI: https://doi.org/10.2478/v10164-012-0064-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in