Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fatigue of Aircraft Structures

The Journal of Institute of Aviation

1 Issue per year

Open Access
Online
ISSN
2300-7591
See all formats and pricing
More options …

Simulating Crack Propagation of a Selected Structural Component of the PZL-130 Orlik TC-II Aircrafts

Krzysztof Jankowski / Piotr Reymer
Published Online: 2015-06-30 | DOI: https://doi.org/10.1515/fas-2014-0013

Abstract

This paper presents the process of estimating crack propagation within a selected structural component of the PZL-130 Orlik TC-II using a numerical model. The model is based on technical drawings and measurements of the real structure. The proper definition of the geometry, including the location and size of the gap between elements, is significant for mesh generation. During the simulation process the gap is combined node by node. Each time, the strain energy release rate (G) is calculated. The stress intensity factor and geometry correction factor are defined for consecutive crack lengths, and used further on to estimate crack propagation.

Keywords: structural integrity; crack propagation simulation; geometry correction factor

REFERENCES

  • 1. T. L. Anderson, Fracture Mechanics Fundamentals and Applications, Taylor&Francis Group, Third edition, (2005).Google Scholar

  • 2. Y. Murakami, Stress Intensity Factors Handbook, Volume 1, Pergamon Press, Great Britain, 1987.Google Scholar

  • 3. L. Bank-Sills, Applied Mechanics Reviews, Vol. 44, pp. 447-461, 1991.Google Scholar

  • 4. I. L. Lim, I.W. Johnston, S. K. Choi, International Journal of Fracture, Vol. 58, pp. 193-210, 1992.CrossrefGoogle Scholar

  • 5. S. N. Atluri, T. Nishioka, Com-putational Methods in the Mechanics of Fracture, Elseviere, 1986, pp. 229-287, 1986.Google Scholar

  • 6. K.N. Shivakumar, I.S. Raju, Engineering Fracture Mechanics, Vol. 42, No. 6, pp. 935-959, 1992.CrossrefGoogle Scholar

  • 7. E.F. Rybicki, M. F. Kanninen, Engineering Fracture Mechanics, Vol. 9, pp. 931-938, 1977.CrossrefGoogle Scholar

  • 8. K.N. Shivakumar, P.W. Tan, J.C. Newman, International Journal of Fracture, Vol. 36, pp. 43-50, 1988.Google Scholar

  • 9. I. S. Raju, Engineering Fracture Mechanics, Vol. 28, No. 3 pp. 251-274, 1987.CrossrefGoogle Scholar

  • 10. Leski A., Beres, W. NRC Research Council, Institute for Aerospace Research, Structures and Materials Laboratory Report, No. LTR-SMPL-2003-0158. Ottawa, 2003.Google Scholar

  • 11. A. Leski, Implementacja metody 3D VCCT obliczania współczynnika intensywności naprężenia w środowisku MSC.Patran. VIII Konferencji Naukowo-Technicznej Programy MES w komputerowym wspomaganiu analizy, projektowania i wytwarzania. Warszawa - Rynia 15-18.10 2003r. CD-ROM z materiałami konferencyjnymi.Google Scholar

  • 12. A. Leski, Finite Elements in Analysis and Design 43, (2007), 261-268.Google Scholar

  • 13. MSC.Marc user manual.Google Scholar

  • 14. James A. Harter, Afgrow users guide and technical manual, Air Force Research Laboratory (1999).Google Scholar

About the article

Published Online: 2015-06-30

Published in Print: 2014-06-01


Citation Information: Fatigue of Aircraft Structures, ISSN (Online) 2300-7591, DOI: https://doi.org/10.1515/fas-2014-0013.

Export Citation

© Krzysztof Jankowski et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in