Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

The journal celebrates now its 20 years!

IMPACT FACTOR 2016: 2.034
5-year IMPACT FACTOR: 2.359

CiteScore 2016: 2.18

SCImago Journal Rank (SJR) 2016: 1.372
Source Normalized Impact per Paper (SNIP) 2016: 1.492

Mathematical Citation Quotient (MCQ) 2016: 0.61

See all formats and pricing
More options …

Nonlinear time-fractional differential equations in combustion science

Gianni Pagnini
Published Online: 2011-01-15 | DOI: https://doi.org/10.2478/s13540-011-0006-8


The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are re-derived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter ν/2 > 0, the evolution equations emerge to be nonlinear time-fractional differential equations of order 1−ν/2 with a non-Gaussian underlying diffusion process.

MSC: 34A08 (main); 34G20; 80A25

Keywords: time-fractional derivative; nonlinear equation; anomalous diffusion; combustion science; premixed flame ball

  • [1] J. Audounet, V. Giovangigli, J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Physica D 121 (1998), 295–316. http://dx.doi.org/10.1016/S0167-2789(98)00153-5CrossrefGoogle Scholar

  • [2] J. Audounet, J.-M. Roquejoffre, An asymptotic fractional differential model of spherical flame. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications 5 (Eds. D. Matignon, G. Montseny), SMAI, Paris (1998), 15–27. http://www.emath.fr/proc/vol.5/ Google Scholar

  • [3] J. D. Buckmaster, G. Joulin, P. D Ronney, The structure and stability of non adiabatic flame balls. Combust. Flame 79 (1990), 381–392. http://dx.doi.org/10.1016/0010-2180(90)90147-JCrossrefGoogle Scholar

  • [4] J. D. Buckmaster, G. Joulin, P. D. Ronney, The structure and stability of non adiabatic flame balls: II. Effects of far field losses. Combust. Flame 84 (1991), 411–422. http://dx.doi.org/10.1016/0010-2180(91)90015-4CrossrefGoogle Scholar

  • [5] R. Gorenflo, S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991). Google Scholar

  • [6] R. Gorenflo, R. Rutman, On ultraslow and intermediate processes. In: Transform Methods and Special Functions, Sofia, 1994 (Eds. P. Rusev, I. Dimovski, V. Kiryakova), Science Culture Technology, Singapore (1995), 171–183. Google Scholar

  • [7] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri, F. Mainardi), Springer-Verlag Wien and New York (1997), 223–276. http://arxiv.org/abs/805.3823 Google Scholar

  • [8] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1 (1998), 167–191. Google Scholar

  • [9] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Anal. 118 (2000), 175–191. Google Scholar

  • [10] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus. Lecture Notes of Mini-Course on Fractional Calculus and Fractional Diffusion Processes by F. Mainardi and R. Gorenflo, at the Centre for Mathematical Physics and Stochastics (Ma-PhySto), University of Aarhus, Denmark, on January 24–28, 2000. http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps Google Scholar

  • [11] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284 (2002), 521–541. http://arxiv.org/pdf/cond-mat/0702072 http://dx.doi.org/10.1016/S0301-0104(02)00714-0Google Scholar

  • [12] V. Guyonne, P. Noble, On a model of flame ball with radiative transfer. SIAM J. Appl. Math. 67 (2007), 854–868. http://dx.doi.org/10.1137/060659612CrossrefGoogle Scholar

  • [13] G. Joulin, Point-source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 185 (1985), 99–113. http://dx.doi.org/10.1080/00102208508946999CrossrefGoogle Scholar

  • [14] E. K. Lenzi, M. K. Lenzi, L. R. Evangelista, L. C. Malacarne, R. S. Mendes, Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J. Stat. Mech. (2009), P02048. Web of ScienceGoogle Scholar

  • [15] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7 (1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5CrossrefGoogle Scholar

  • [16] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153–192. http://arxiv.org/abs/cond-mat/0702419 Google Scholar

  • [17] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010 (2010), 104505. Google Scholar

  • [18] P. D. Ronney, Near-limit flame structures at low Lewis number. Combust. Flame 82 (1990), 1–14. http://dx.doi.org/10.1016/0010-2180(90)90074-2CrossrefGoogle Scholar

  • [19] P. D. Ronney, K. N. Whaling, A. Abbud-Madrid, J. L. Gatto, V. L. Pisowicz, Stationary premixed flames in spherical and cylindrical geometries. AIAA J. 32 (1994), 569–577. http://dx.doi.org/10.2514/3.12023CrossrefGoogle Scholar

  • [20] P. D. Ronney, M. S. Wu, H. G. Pearlman, K. J. Weiland, Structure Of Flame Balls At Low Lewis-number (SOFBALL): Preliminary results from STS-83 space flight experiments. AIAA J. 36 (1998), 1361–1368. http://dx.doi.org/10.2514/2.553Google Scholar

  • [21] H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flamme sphérique avec pertes de chaleur. C. R. Acad. Sci. Paris Série I 332 (2001), 1083–1086. Google Scholar

  • [22] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today November (2002), 48–54. Google Scholar

  • [23] Ya. B. Zeldovich, Theory of Combustion and Detonation of Gases. Academy of Sciences (USSR), Moscow (1944). Google Scholar

About the article

Published Online: 2011-01-15

Published in Print: 2011-03-01

Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-011-0006-8.

Export Citation

© 2011 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Gianni Pagnini
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 2
Enrico Scalas and Noèlia Viles
Fractional Calculus and Applied Analysis, 2012, Volume 15, Number 2
Gianni Pagnini, Antonio Mura, and Francesco Mainardi
International Journal of Stochastic Analysis, 2012, Volume 2012, Page 1
Gianni Pagnini
Fractional Calculus and Applied Analysis, 2012, Volume 15, Number 1
G. Pagnini
The European Physical Journal Special Topics, 2011, Volume 193, Number 1, Page 105

Comments (0)

Please log in or register to comment.
Log in