Jump to ContentJump to Main Navigation
Show Summary Details

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

IMPACT FACTOR increased in 2015: 2.246
Rank 10 out of 312 in category Mathematics, 9 out of 254 in Applied Mathematics and 15 out of 101 in Mathematics, Interdisciplinary Applications in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404
Impact per Publication (IPP) 2015: 2.218

Mathematical Citation Quotient (MCQ) 2015: 0.61

See all formats and pricing

Nonlinear time-fractional differential equations in combustion science

Gianni Pagnini
  • Research and Development in Sardinia, CRS4 Center for Advanced Studies, Polaris Bldg. 1, 09010, Pula (CA), Italy
  • Email:
Published Online: 2011-01-15 | DOI: https://doi.org/10.2478/s13540-011-0006-8


The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are re-derived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter ν/2 > 0, the evolution equations emerge to be nonlinear time-fractional differential equations of order 1−ν/2 with a non-Gaussian underlying diffusion process.

MSC: 34A08 (main); 34G20; 80A25

Keywords: time-fractional derivative; nonlinear equation; anomalous diffusion; combustion science; premixed flame ball

  • [1] J. Audounet, V. Giovangigli, J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Physica D 121 (1998), 295–316. http://dx.doi.org/10.1016/S0167-2789(98)00153-5 [Crossref]

  • [2] J. Audounet, J.-M. Roquejoffre, An asymptotic fractional differential model of spherical flame. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications 5 (Eds. D. Matignon, G. Montseny), SMAI, Paris (1998), 15–27. http://www.emath.fr/proc/vol.5/

  • [3] J. D. Buckmaster, G. Joulin, P. D Ronney, The structure and stability of non adiabatic flame balls. Combust. Flame 79 (1990), 381–392. http://dx.doi.org/10.1016/0010-2180(90)90147-J [Crossref]

  • [4] J. D. Buckmaster, G. Joulin, P. D. Ronney, The structure and stability of non adiabatic flame balls: II. Effects of far field losses. Combust. Flame 84 (1991), 411–422. http://dx.doi.org/10.1016/0010-2180(91)90015-4 [Crossref]

  • [5] R. Gorenflo, S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991).

  • [6] R. Gorenflo, R. Rutman, On ultraslow and intermediate processes. In: Transform Methods and Special Functions, Sofia, 1994 (Eds. P. Rusev, I. Dimovski, V. Kiryakova), Science Culture Technology, Singapore (1995), 171–183.

  • [7] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri, F. Mainardi), Springer-Verlag Wien and New York (1997), 223–276. http://arxiv.org/abs/805.3823

  • [8] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1 (1998), 167–191.

  • [9] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Anal. 118 (2000), 175–191.

  • [10] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus. Lecture Notes of Mini-Course on Fractional Calculus and Fractional Diffusion Processes by F. Mainardi and R. Gorenflo, at the Centre for Mathematical Physics and Stochastics (Ma-PhySto), University of Aarhus, Denmark, on January 24–28, 2000. http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps

  • [11] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284 (2002), 521–541. http://arxiv.org/pdf/cond-mat/0702072 http://dx.doi.org/10.1016/S0301-0104(02)00714-0

  • [12] V. Guyonne, P. Noble, On a model of flame ball with radiative transfer. SIAM J. Appl. Math. 67 (2007), 854–868. http://dx.doi.org/10.1137/060659612 [Crossref]

  • [13] G. Joulin, Point-source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 185 (1985), 99–113. http://dx.doi.org/10.1080/00102208508946999 [Crossref]

  • [14] E. K. Lenzi, M. K. Lenzi, L. R. Evangelista, L. C. Malacarne, R. S. Mendes, Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J. Stat. Mech. (2009), P02048. [Web of Science]

  • [15] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7 (1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5 [Crossref]

  • [16] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153–192. http://arxiv.org/abs/cond-mat/0702419

  • [17] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010 (2010), 104505.

  • [18] P. D. Ronney, Near-limit flame structures at low Lewis number. Combust. Flame 82 (1990), 1–14. http://dx.doi.org/10.1016/0010-2180(90)90074-2 [Crossref]

  • [19] P. D. Ronney, K. N. Whaling, A. Abbud-Madrid, J. L. Gatto, V. L. Pisowicz, Stationary premixed flames in spherical and cylindrical geometries. AIAA J. 32 (1994), 569–577. http://dx.doi.org/10.2514/3.12023 [Crossref]

  • [20] P. D. Ronney, M. S. Wu, H. G. Pearlman, K. J. Weiland, Structure Of Flame Balls At Low Lewis-number (SOFBALL): Preliminary results from STS-83 space flight experiments. AIAA J. 36 (1998), 1361–1368. http://dx.doi.org/10.2514/2.553

  • [21] H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flamme sphérique avec pertes de chaleur. C. R. Acad. Sci. Paris Série I 332 (2001), 1083–1086.

  • [22] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today November (2002), 48–54.

  • [23] Ya. B. Zeldovich, Theory of Combustion and Detonation of Gases. Academy of Sciences (USSR), Moscow (1944).

About the article

Published Online: 2011-01-15

Published in Print: 2011-03-01

Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-011-0006-8. Export Citation

© 2011 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Enrico Scalas and Noèlia Viles
Fractional Calculus and Applied Analysis, 2012, Volume 15, Number 2
Gianni Pagnini, Antonio Mura, and Francesco Mainardi
International Journal of Stochastic Analysis, 2012, Volume 2012, Page 1
G. Pagnini
The European Physical Journal Special Topics, 2011, Volume 193, Number 1, Page 105

Comments (0)

Please log in or register to comment.
Log in