[1] A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A, Math. Gen.
38 (2005), 679–684. http://dx.doi.org/10.1088/0305-4470/38/42/L03CrossrefGoogle Scholar

[2] A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal.
6 (2003), 259–279. Google Scholar

[3] C.F.M. Coimbra, Mechanics with variable-order differential operators. Annalen der Physik 12 (2003), 692–703. CrossrefGoogle Scholar

[4] J.L.A. Dubbeldam, A. Milchev, V.G. Rostiashvili, T.A. Vilgis, Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E
76 (2007), 010801 (R). http://dx.doi.org/10.1103/PhysRevE.76.010801CrossrefGoogle Scholar

[5] A. Freed, K. Diethelm, Yu. Luchko, Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus. NASA’s Glenn Research Center, Ohio (2002). Google Scholar

[6] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal.
1 (1998), 167–191. Google Scholar

[7] R. Gorenflo, F. Mainardi, Continuous time random walk, Mittag-Leffer waiting time and fractional diffusion: mathematical aspects. Chap. 4, In: R. Klages, G. Radons, I.M. Sokolov (Eds.): Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, Germany (2008), 93–127. http://dx.doi.org/10.1002/9783527622979.ch4CrossrefGoogle Scholar

[8] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. Journal of Computational and Applied Mathematics
229 (2009), 400–415. http://dx.doi.org/10.1016/j.cam.2008.04.005CrossrefGoogle Scholar

[9] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). Web of ScienceGoogle Scholar

[10] R. Hilfer, Fractional calculus and regular variation in thermodynamics. In: Applications of Fractional Calculus in Physics (Ed. R. Hilfer), World Scientific, Singapore (2000). http://dx.doi.org/10.1142/9789812817747CrossrefGoogle Scholar

[11] R. Hilfer, Fractional time evolution. In: Applications of Fractional Calculus in Physics (Ed. R. Hilfer), World Scientific, Singapore (2002). Google Scholar

[12] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys.
284 (2002), 399–408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5CrossrefGoogle Scholar

[13] R. Klages, G. Radons, I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, Germany (2008). Google Scholar

[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). Google Scholar

[15] C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynamics
29 (2002), 57–98. http://dx.doi.org/10.1023/A:1016586905654CrossrefGoogle Scholar

[16] Yu. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl.
374 (2011), 538–548. http://dx.doi.org/10.1016/j.jmaa.2010.08.048CrossrefGoogle Scholar

[17] Yu. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Computers and Mathematics with Applications
59 (2010), 1766–1772. http://dx.doi.org/10.1016/j.camwa.2009.08.015CrossrefGoogle Scholar

[18] Yu. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal.
12 (2009), 409–422. Google Scholar

[19] Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl.
351 (2009), 218–223. http://dx.doi.org/10.1016/j.jmaa.2008.10.018CrossrefGoogle Scholar

[20] R.L. Magin, O. Abdullah, D. Baleanu et al., Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. Journal of Magnetic Resonance
190 (2008), 255–270. http://dx.doi.org/10.1016/j.jmr.2007.11.007CrossrefWeb of ScienceGoogle Scholar

[21] R.L. Magin, Fractional calculus in bioengineering: Part1, Part 2 and Part 3. Critical Reviews in Biomedical Engineering
32 (2004), 1–104, 105–193, 195–377. http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10CrossrefGoogle Scholar

[22] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy. World Scientific, Singapure (2010). http://dx.doi.org/10.1142/9781848163300CrossrefGoogle Scholar

[23] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons and Fractals
7 (1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5CrossrefGoogle Scholar

[24] F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal.
4(2001), 153–192. Google Scholar

[25] F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study. Communications in Nonlinear Science and Numerical Simulation
15 (2010), 939–945. http://dx.doi.org/10.1016/j.cnsns.2009.05.004CrossrefGoogle Scholar

[26] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports
339 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3CrossrefGoogle Scholar

[27] R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen.
37 (2004), R161–R208. http://dx.doi.org/10.1088/0305-4470/37/31/R01CrossrefGoogle Scholar

[28] M. Naber, Distributed order fractional subdiffusion. Fractals
12 (2004), 23–32. http://dx.doi.org/10.1142/S0218348X04002410CrossrefGoogle Scholar

[29] H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modelling of diffusive-convective effects on the oscillatory flow past a sphere. Journal of Vibration and Control
14 (2008), 1659–1672. http://dx.doi.org/10.1177/1077546307087397CrossrefWeb of ScienceGoogle Scholar

[30] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). Google Scholar

[31] P. Pucci, J. Serrin, The Maximum Principle. Birkhäuser, Basel, Boston, Berlin (2007). Google Scholar

[32] Yu.A. Rossikhin, M.V. Shitikova, Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. The Shock and Vibration Digest
36 (2004), 326. http://dx.doi.org/10.1177/0583102404039131CrossrefGoogle Scholar

[33] Yu.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fract. Calc. Appl. Anal.
10 (2007), 111121. Google Scholar

[34] I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Polon. B
35 (2004), 1323–1341. Google Scholar

[35] V.V. Uchaikin, Method of fractional derivatives, Artishok, Ul’janovsk (2008), In Russian. Google Scholar

[36] G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005). Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.