[1] O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl.
272, No 1 (2002), 368–379. http://dx.doi.org/10.1016/S0022-247X(02)00180-4 [Crossref]

[2] O.P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control
13, No 9–10 (2007), 1217–1237. http://dx.doi.org/10.1177/1077546307077472 [Crossref] [Web of Science]

[3] O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A
40, No 24 (2007), 6287–6303. http://dx.doi.org/10.1088/1751-8113/40/24/003 [Crossref]

[4] R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys.
51, No 3 (2010), 033503, 12 pp. http://dx.doi.org/10.1063/1.3319559 [Web of Science] [Crossref]

[5] R. Almeida, D.F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett.
22, No 12 (2009), 1816–1820. http://dx.doi.org/10.1016/j.aml.2009.07.002 [Web of Science] [Crossref]

[6] R. Almeida, D.F.M. Torres, Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput.
217, No 3 (2010), 956–962. http://dx.doi.org/10.1016/j.amc.2010.03.085 [Crossref] [Web of Science]

[7] R. Almeida, D.F.M. Torres, Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl.
61, No 10 (2011), 3097–3104. http://dx.doi.org/10.1016/j.camwa.2011.03.098 [Crossref] [Web of Science]

[8] T.M. Atanacković, S. Konjik, S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A
41, No 9 (2008), 095201, 12 pp.

[9] D. Baleanu, Fractional variational principles in action. Phys. Scripta
T136 (2009), Article Number: 014006. [Web of Science]

[10] D. Baleanu, O.P. Agrawal, Fractional Hamilton formalism within Caputo’s derivative. Czechoslovak J. Phys.
56, No 10–11 (2006), 1087–1092. http://dx.doi.org/10.1007/s10582-006-0406-x [Crossref]

[11] D. Baleanu, A.K. Golmankhaneh, R. Nigmatullin, A.K. Golmankhaneh, Fractional Newtonian mechanics. Cent. Eur. J. Phys.
8, No 1 (2010), 120–125. http://dx.doi.org/10.2478/s11534-009-0085-x [Crossref]

[12] D. Baleanu, S.I. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scripta
72, No 2–3 (2005), 119–121. http://dx.doi.org/10.1238/Physica.Regular.072a00119 [Crossref]

[13] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems. Signal Process.
91, No 3 (2011), 513–524. http://dx.doi.org/10.1016/j.sigpro.2010.05.001 [Crossref] [Web of Science]

[14] R. Brunetti, D. Guido, R. Longo, Modular structure and duality in conformal quantum field theory. Comm. Math. Phys.
156, No 1 (1993), 201–219. http://dx.doi.org/10.1007/BF02096738 [Crossref]

[15] J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys.
48, No 3 (2007), 033504, 34 pp. http://dx.doi.org/10.1063/1.2483292 [Crossref]

[16] R.A. El-Nabulsi, D.F.M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β). Math. Methods Appl. Sci.
30, No 15 (2007), 1931–1939. http://dx.doi.org/10.1002/mma.879 [Crossref]

[17] R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems. J. Math. Phys.
49, No 5 (2008), 053521, 7 pp. [Crossref]

[18] Fract. Calc. Appl. Anal., p ISSN 1311-0454, e ISSN 1314-2224, Vol. 1 (1998) — Vol. 13 (2010) at http://www.math.bas.bg/~fcaa; Vol. 14 (2011) at http://www.springerlink.com/content/1311-0454.

[19] G.S.F. Frederico, D.F.M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl.
334, No 2 (2007), 834–846. http://dx.doi.org/10.1016/j.jmaa.2007.01.013 [Crossref]

[20] G.S.F. Frederico, D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam.
53, No 3 (2008), 215–222. http://dx.doi.org/10.1007/s11071-007-9309-z [Web of Science] [Crossref]

[21] G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput.
217, No 3 (2010), 1023–1033. http://dx.doi.org/10.1016/j.amc.2010.01.100 [Web of Science] [Crossref]

[22] R. Hilfer, Applications of Fractional Calculus in Physics. World Sci. Publishing, River Edge, NJ (2000). http://dx.doi.org/10.1142/9789812817747 [Crossref]

[23] G. Jumarie, Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function. J. Appl. Math. Comput.
23, No 1–2 (2007), 215–228. http://dx.doi.org/10.1007/BF02831970 [Crossref]

[24] G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal. Real World Appl.
11, No 1 (2010), 535–546. http://dx.doi.org/10.1016/j.nonrwa.2009.01.003 [Web of Science] [Crossref]

[25] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

[26] M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A
35, No 31 (2002), 6675–6693. http://dx.doi.org/10.1088/0305-4470/35/31/311 [Crossref]

[27] A.B. Malinowska, D.F.M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales. Dynam. Systems Appl.
18, No 3–4 (2009), 469–481.

[28] A.B. Malinowska, D.F.M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl.
59, No 9 (2010), 3110–3116. http://dx.doi.org/10.1016/j.camwa.2010.02.032 [Crossref]

[29] A.B. Malinowska, D.F.M. Torres, Natural boundary conditions in the calculus of variations. Math. Methods Appl. Sci.
33, No 14 (2010), 1712–1722. http://dx.doi.org/10.1002/mma.1289 [Crossref]

[30] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

[31] D. Mozyrska, D.F.M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math.
26, No 2 (2010), 210–221.

[32] T. Odzijewicz, D.F.M. Torres, Fractional calculus of variations for double integrals. Balkan J. Geom. Appl.
16, No 2 (2011), 102–113.

[33] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974).

[34] A.Yu. Plakhov, D.F.M. Torres, Newton’s aerodynamic problem in media of chaotically moving particles. Mat. Sb.
196, No 6 (2005), 111–160 (In Russian); transl. in EN: Sb. Math. 196, No 5–6 (2005), 885–933.

[35] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, CA (1999).

[36] E.M. Rabei, B.S. Ababneh, Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl.
344, No 2 (2008), 799–805. http://dx.doi.org/10.1016/j.jmaa.2008.03.011 [Crossref]

[37] E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, D. Baleanu, The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl.
327, No 2 (2007), 891–897. http://dx.doi.org/10.1016/j.jmaa.2006.04.076 [Crossref]

[38] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53, No 2 (1996), 1890–1899. http://dx.doi.org/10.1103/PhysRevE.53.1890 [Crossref]

[39] B. Ross, S.G. Samko, E.R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange
20, No 1 (1994/95), 140–157.

[40] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Transl. from the 1987 Russian original, Gordon and Breach, Yverdon (1993).

[41] M.R. Sidi Ammi, R.A.C. Ferreira, D.F.M. Torres, Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl.
2008, Art. ID 576876 (2008), 13 pp.

[42] V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Ann. Physics
323, No 11 (2008), 2756–2778. http://dx.doi.org/10.1016/j.aop.2008.04.005 [Web of Science] [Crossref]

[43] J.L. Troutman, Variational Calculus and Optimal Control. Second Ed., Springer, New York (1996). http://dx.doi.org/10.1007/978-1-4612-0737-5 [Crossref]

[44] B. van Brunt, The Calculus of Variations. Springer, New York (2004).

## Comments (0)