[1] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

[2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[3] A. A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[4] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007; http://www.springerlink.com/content/978-1-4020-6041-0/ #section=345728&page=1

[5] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag Berlin Heidelberg, Berlin, 2008; http://www.springerlink.com/content/978-3-540-72702-6/ #section=234316&page=1

[6] N.H. Abel, Auflösung einer mechanischen Aufgabe, J. Reine Angew. Math.
1 (1826), 153–157. http://dx.doi.org/10.1515/crll.1826.1.153 [CrossRef]

[7] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Heidelberg, 2010; http://www.springer.com/mathematics/dynamical+systems/book/ 978-3-642-14573-5

[8] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their solution and Some of Their Applications, Academic Press, San Diego, 1999.

[9] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, Hackensack NJ, 2010. http://dx.doi.org/10.1142/9781848163300 [CrossRef]

[10] A. M. Mathai, R.K. Saxena, and H.J. Haubold, The H-function: Theory and Applications, Springer, New York, 2010; http://www.springerlink.com/content/978-1-4419-0915-2/ #section=534430&page=1

[11] R. Gorenflo and F. Mainardi, Fractional calculus, arXiv:0805.3823v1 [math-ph], 25 May 2008.

[12] N. Südland, G. Baumann, and T.F. Nonnenmacher, Open Problem: Who knows about the ℵ-functions ?, Fract. Calc. Appl. Anal.
1, No 4 (1998), 401–402; http://www.math.bas.bg/~fcaa/volume1/pp401-402.gif

[13] N. Südland, Fraktionale Differentialgleichungen und Foxsche HFunktionen mit Beispielen aus der Physik, PhD Thesis, University of Ulm, 2000.

[14] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008; http://www.springerlink.com/content/978-0-387-75893-0/ #section=202128&page=1 http://dx.doi.org/10.1007/978-0-387-75894-7

[15] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Application, CRC Press, Boca Raton, 1993.

[16] A. D. Freed and K. Diethelm, Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Mod. Mech.
5 (2006), 203–215. http://dx.doi.org/10.1007/s10237-005-0011-0 [CrossRef]

[17] Ch. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comput.
41 (1983), 87–102. http://dx.doi.org/10.1090/S0025-5718-1983-0701626-6 [CrossRef]

[18] A. Schmidt and L. Gaul, FE Implementation of Viscoelastic Constitutive Stress-Strain Relations Involving Fractional Time Derivatives, Preprint, 2001, 1–11.

[19] O. P. Agrawal and P. Kumar, Comparison of five numerical schemes for fractional differential equations, In: J. Sabatier, O. P. Agrawal, and J. A. T. Machado (Ed-s), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht (2007), 43–60.

[20] L. Yuan and O. P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, J. Vib. Acoust.
124 (2002), 014502–014506. http://dx.doi.org/10.1115/1.1448322 [CrossRef]

[21] S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A
365 (2007), 345–350. http://dx.doi.org/10.1016/j.physleta.2007.01.046 [CrossRef]

[22] K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng.
194 (2005), 743–773. http://dx.doi.org/10.1016/j.cma.2004.06.006 [CrossRef]

[23] J. McNamee, F. Stenger, and E. L. Whitney, Whittaker’s cardinal function in retrospect, Math. Comp.
23 (1971), 141–154.

[24] F. Stenger, Collocating convolutions, Math. Comp.
64 (1995), 211–235. http://dx.doi.org/10.1090/S0025-5718-1995-1270624-7 [CrossRef]

[25] G.-A. Zakeri and M. Navab, Sinc collocation approximation of nonsmooth solution of a nonlinear weakly singular Volterra integral equation, J. Comp. Phys.
229 (2010), 6548–6557. http://dx.doi.org/10.1016/j.jcp.2010.05.010 [CrossRef]

[26] T. Okayama, T. Matsuo, and M. Sugihara, Sinc-collocation Methods for Weakly Singular Fredholm Integral Equations of the Second Kind, 2009; http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

[27] F. Stenger, Handbook of Sinc Numerical Methods, CRC Press, Boca Raton, 2011; http://www.crcpress.com/product/isbn/9781439821589

[28] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad. Publ., Dordrecht, 1994.

[29] J. T. Edwards, J. A. Roberts, and N. J. Ford, A comparison of Adomiannal differential equations: An application-oriented exposition using differential operators of Caputo type, Numerical Analysis Report, Manchester Centre for Computational Mathematics
309 (1997), 1–18.

[30] A. Répaci, Nonlinear dynamical systems: On the accuracy of adomian’s decomposition method, Appl. Math. Lett.
3 (1990), 35–39. http://dx.doi.org/10.1016/0893-9659(90)90042-A [CrossRef]

[31] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, 2004.

[32] J. H. He, Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. Meth. Appl. Mech. Eng.
167 (1998), 69–73. http://dx.doi.org/10.1016/S0045-7825(98)00109-1 [CrossRef]

[33] J. H. He, Variational iteration method — some recent results and new interpretations, J. Comput. Appl. Math.
207 (2007), 3–17. http://dx.doi.org/10.1016/j.cam.2006.07.009 [CrossRef]

[34] Z. Odibata, S. Momanib, and V. S. Erturkc, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comp.
197 (2008), 467–477. http://dx.doi.org/10.1016/j.amc.2007.07.068 [CrossRef]

[35] M. Tataria and M. Dehghan, On the convergence of He’s variational iteration method, J. Comp. Appl. Math.
207 (2007), 121–128. http://dx.doi.org/10.1016/j.cam.2006.07.017 [CrossRef]

[36] S. Liang and D. J. Jeffreya, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Comm. Non. Sci. Num. Sim.
14 (2009), 4057–4064. http://dx.doi.org/10.1016/j.cnsns.2009.02.016 [CrossRef]

[37] J.-P. Berrut, Barycentric formulae for cardinal (SINC-)interpolants, Numer. Math.
54 (1989), 703–718. http://dx.doi.org/10.1007/BF01396489 [CrossRef]

[38] V. Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl.
328 (2007), 1026–1033. http://dx.doi.org/10.1016/j.jmaa.2006.06.007 [CrossRef]

[39] F. Stenger, Summary of Sinc numerical methods, J. Comp. Appl. Math.
121 (2000), 379–420; http://www.mendeley.com/research/summary-sinc-numerical-methods-13/ http://dx.doi.org/10.1016/S0377-0427(00)00348-4 [CrossRef]

[40] K. Diethelm and N. J. Ford, Numerical solution of the Bagley-Torvik equation, Numerical Analysis Report, Manchester Centre for Computational Mathematics
378 (2003), 1–13.

[41] G. Baumann, N. Südland, and T. F. Nonnenmacher, Anomalous relaxation and diffusion processes in complex systems, Trans. Th. Stat. Phys.
29 (2000), 157–171. http://dx.doi.org/10.1080/00411450008205866 [CrossRef]

[42] M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys.
91 (1971), 134–147; http://www.springerlink.com/content/wv5233j83145/?sortorder=asc&po=10; Reprinted in: Fract. Calc. Appl. Anal.
10, No 3 (2007), 309–324; at http://www.math.bas.bg/~fcaa http://dx.doi.org/10.1007/BF00879562

[43] K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods, Computing
71 (2003), 305–319. http://dx.doi.org/10.1007/s00607-003-0033-3 [CrossRef]

[44] M. A. Kowalski, K. A. Sikorski, and F. Stenger, Selected Topics in Approximation and Computation, Oxford Univ. Press, New York, 1995.

[45] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2706-9 [CrossRef]

[46] G. Baumann and M. Mnuk, Elements — An object-oriented approach to industrial software development, The Mathematica Journal
10 (2006), 161–186; http://www.mathematica-journal.com/issue/v10i1/Elements.html

[47] G. Baumann, Mathematica® for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals, Springer, New York, 2005; http://www.springerlink.com/content/978-0-387-21933-2/ #section=531623&page=1

[48] C. Lubich, Convolution Quadrature and Discretized Operational Calculus: I, Numer. Math.
52 (1988), 129–145. http://dx.doi.org/10.1007/BF01398686 [CrossRef]

[49] C. Lubich, Convolution Quadrature and Discretized Operational Calculus: II, Numer. Math.
52 (1988), 413–425. http://dx.doi.org/10.1007/BF01462237 [CrossRef]

[50] K. Diethelm, An improvement of a nonclassical numerical method for the computation of fractional derivatives, J. Vib. Acoust.
131 (2009), 321–325. http://dx.doi.org/10.1115/1.2981167 [CrossRef]

[51] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech.
51 (1984), 294–298. http://dx.doi.org/10.1115/1.3167615 [CrossRef]

[52] P. Linz, Analytical and Numerical Methods for Volterra Equations, Soc. for Industrial and Applied Mathematics, Philadelphia, 1985.

[53] H. Brunner, The numerical analysis of functional integral and integrodifferential equations of Volterra type, Acta Numerica
13 (2004), 55–145. http://dx.doi.org/10.1017/CBO9780511569975.002 [CrossRef]

[54] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, 2004. http://dx.doi.org/10.1017/CBO9780511543234 [CrossRef]

## Comments (0)