Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year


IMPACT FACTOR 2016: 2.034
5-year IMPACT FACTOR: 2.359

CiteScore 2016: 2.18

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404

Mathematical Citation Quotient (MCQ) 2015: 0.61

Online
ISSN
1314-2224
See all formats and pricing
In This Section

And I say to myself: “What a fractional world!”

J. Tenreiro Machado
  • Dept. of Electrical Engineering, Institute of Engineering of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
  • Email:
Published Online: 2011-09-29 | DOI: https://doi.org/10.2478/s13540-011-0037-1

Abstract

This paper discusses several complex systems in the perspective of fractional dynamics. For prototype systems are considered the cases of deoxyribonucleic acid decoding, financial evolution, earthquakes events, global warming trend, and musical rhythms. The application of the Fourier transform and of the power law trendlines leads to an assertive representation of the dynamics and to a simple comparison of their characteristics. Moreover, the gallery of different systems, both natural and man made, demonstrates the richness of phenomena that can be described and studied with the tools of fractional calculus.

MSC: Primary 26A33; Secondary 60G22, 92B05, 92D20, 91G80, 86A15, 86A17, 86A10, 00A65

Keywords: fractional calculus; Fourier analysis; DNA; financial indices; earthquakes; global warming; music

  • [1] V. Afreixo, P. Ferreira, D. Santos, Fourier analysis of symbolic data: A brief review. Digital Signal Processing 14 (2004), 523–530. DOI:10.1016/j.dsp.2004.08.001 http://dx.doi.org/10.1016/j.dsp.2004.08.001 [Crossref]

  • [2] T. Anastasio, The fractional-order dynamics of Brainstem vestibulooculomotor neurons. Biological Cybernetics 72, No 1 (1994), 69–79. DOI: 10.1007/BF00206239 http://dx.doi.org/10.1007/BF00206239 [Crossref]

  • [3] D. Baleanu, A. Golmankhaneh, A. Golmankhaneh, R. Nigmatullin, Newtonian law with memory. Nonlinear Dynamics 60, No 1–2 (2010), 81–86. DOI: 10.1007/s11071-009-9581-1 http://dx.doi.org/10.1007/s11071-009-9581-1 [Crossref] [Web of Science]

  • [4] http://en.wikipedia.org/wiki/CAC_40

  • [5] M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Journal Geophys. J. R. Astr. Soc., 13,Issue 5 (1967), 529–539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3–14.

  • [6] http://en.wikipedia.org/wiki/Corcovado_(song)

  • [7] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010). ISBN: 978-3-642-14573-5 http://dx.doi.org/10.1007/978-3-642-14574-2

  • [8] http://en.wikipedia.org/wiki/DNA

  • [9] G. Dodin, P. Vandergheynst, P. Levoir, C. Cordier, L. Marcourt, Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. Journal of Theoretical Biology 206, No 3 (2000), 323–326. DOI:10.1006/jtbi.2000.2127 http://dx.doi.org/10.1006/jtbi.2000.2127 [Crossref]

  • [10] http://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

  • [11] F. Duarte, J. Machado, G. Duarte, Dynamics of the Dow Jones and the NASDAQ stock indexes, Nonlinear Dynamics, Springer 61, No 4 (2010), 691–705. DOI: 10.1007/s11071-010-9680-z http://dx.doi.org/10.1007/s11071-010-9680-z [Crossref]

  • [12] I. Ebersberger, P. Galgoczy, S. Taudien, S. Taenzer, M. Platzer, A. von Haeseler, Mapping human genetic ancestry. Molecular Biology and Evolution 24, No 10 (2007), 2266–2276. DOI: 10.1093/molbev/msm156 http://dx.doi.org/10.1093/molbev/msm156 [Crossref] [Web of Science]

  • [13] http://en.wikipedia.org/wiki/Global_warming

  • [14] http://data.giss.nasa.gov/gistemp/

  • [15] R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance, III: The diffusion limit, In: M. Kohlmann and S. Tang (Editors), “Mathematical Finance”, Birkhäuser Verlag, Basel-Boston-Berlin, 2001, 171–180. http://dx.doi.org/10.1007/978-3-0348-8291-0_17 [Crossref]

  • [16] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000). ISBN: 978-981-02-3457-7

  • [17] C. Ionescu, J. Machado, R. De Keyser, Modeling of the lung impedance using a fractional order ladder network with constant phase elements. IEEE Transactions on Biomedical Circuits and Systems 5, No 1 (2011) 83–89. DOI: 10.1109/TBCAS.2010.2077636 http://dx.doi.org/10.1109/TBCAS.2010.2077636 [Crossref]

  • [18] C. Jeng, I. Yang, K. Hsieh, C. Lin, Clustering analysis for bacillus genus using Fourier transform and self-organizing map, In: ICONIP 2006, Part III, LNCS 4234, Springer-Verlag (2006), 48–57. DOI: 10.1007/11893295 6 [Crossref]

  • [19] A. Kilbas, H. M Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). ISBN: 978-0444518323

  • [20] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. Czestochowa University of Technology, Czestochowa (2009). ISBN: 978-83-7193-422-3

  • [21] G. Lu, Y. Chen, Robust stability and stabilization of fractional-order interval systems with the fractional order alpha: The 0 < α < 1 case. IEEE Transactions on Automatic Control 55, No 1 (2010), 152–158. DOI: 10.1109/TAC.2009.2033738 http://dx.doi.org/10.1109/TAC.2009.2033738 [Web of Science]

  • [22] R. Magin, Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006). ISBN: 978-1567002157

  • [23] R. Magin, O. Abdullah, D. Baleanu, X. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. Journal of Magnetic Resonance 190, No 2 (2008), 255–270. DOI: 10.1016/j.jmr.2007.11.007 http://dx.doi.org/10.1016/j.jmr.2007.11.007 [Web of Science] [Crossref]

  • [24] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010). ISBN: 978-1-84816-329-4 http://dx.doi.org/10.1142/9781848163300

  • [25] F. Mainardi, G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Special Topics. 193, (2011), 133–160. DOI: 10.1140/epjst/e2011-01387-1 http://dx.doi.org/10.1140/epjst/e2011-01387-1 [Crossref]

  • [26] F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance, II: The waiting-time distribution. Physica A 287, No 3–4, (2000), 468–481. [E-print http://arxiv.org/abs/cond-mat/0006454 http://dx.doi.org/10.1016/S0378-4371(00)00386-1 [Crossref]

  • [27] F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 10,No 3 (2007), 269–308. [E-print http://arxiv.org/abs/0801.4914]

  • [28] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993). ISBN: 978-0471588849

  • [29] C. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu, Fractional Order Systems and Controls: Fundamentals and Applications. Springer, London (2010). ISBN: 978-1849963343 http://dx.doi.org/10.1007/978-1-84996-335-0

  • [30] W. Murphy, T. Pringle, T. Crider, M. Springer, W. Miller, Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research 17, (2007), 413–421. DOI: 10.1101/gr.5918807 http://dx.doi.org/10.1101/gr.5918807 [Web of Science] [Crossref]

  • [31] K. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York and London (1974). ISBN: 978-0486450018

  • [32] A. Oustaloup, La Commande CRONE: Commande Robuste d’Ordre Non Entier. Hermès, Paris (1991). ISBN 2-86601-289-5

  • [33] H. Pearson, Genetics: What is a gene?. Nature 441 (2006), 398–401. DOI:10.1038/441398a http://dx.doi.org/10.1038/441398a [Crossref]

  • [34] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). ISBN: 978-0-12-558840-9

  • [35] A. Prasad, M. Allard, Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology and Evolution 25, No 9 (2008), 1795–1808. DOI: 10.1093/molbev/msn104 http://dx.doi.org/10.1093/molbev/msn104 [Web of Science] [Crossref]

  • [36] J. Sabatier, O. Agrawal, J. Machado (Eds.), Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007). ISBN: 978-1402060410

  • [37] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, London (1993). ISBN: 978-2881248641

  • [38] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A: Statistical Mechanics and its Applications 284, No 1–4 (2000), 376–384. DOI: 10.1016/S0378-4371(00)00255-7 [E-print http://arxiv.org/abs/cond-mat/0001120] http://dx.doi.org/10.1016/S0378-4371(00)00255-7 [Crossref]

  • [39] http://en.wikipedia.org/wiki/Saturday Night Fever: The Original Movie Sound Track

  • [40] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulations 16, No 3 (2011), 1140–1153. DOI: 10.1016/j.cnsns.2010.05.027 http://dx.doi.org/10.1016/j.cnsns.2010.05.027 [Crossref]

  • [41] J. Tenreiro Machado, A. Costa, M. Quelhas, Fractional dynamics in DNA. Communications in Nonlinear Science and Numerical Simulations 16, No 8 (2011), 2963–2969. DOI: 10.1016/j.cnsns.2010.11.007 http://dx.doi.org/10.1016/j.cnsns.2010.11.007 [Crossref]

  • [42] J. Tenreiro Machado, A. Costa, M. Lima, A multidimensional scaling perspective of entropy analysis applied to musical compositions. Nonlinear Dynamics 65,No 4 (2011), 399–412. DOI: 10.1007/s11071-010-9900-6 http://dx.doi.org/10.1007/s11071-010-9900-6 [Crossref]

  • [43] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya, R. Ramaswamy, Prediction of probable genes by Fourier analysis of genomic sequences. Comput. Appl. Biosci. 13,No 3 (1997), 263–270. DOI: 10.1093/bioinformatics/13.3.263 [Crossref]

  • [44] C. Yin, S. Yau, A Fourier characteristic of coding sequences: Origins and a non-Fourier approximation. Journal of Computational Biology 12, No 9 (2005), 1153–1165. DOI: 10.1089/cmb.2005.12.1153 http://dx.doi.org/10.1089/cmb.2005.12.1153 [Crossref]

  • [45] G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005). ISBN: 978-0198526049

  • [46] H. Zhao, G. Bourque, Recovering genome rearrangements in the mammalian phylogeny. Genome Research 19, (2009), 934–942. DOI: 10.1101/gr.086009.108 http://dx.doi.org/10.1101/gr.086009.108 [Web of Science] [Crossref]

  • [47] Y. Zhou, L. Zhou, Z. Yu, V. Anh, Distinguish coding and noncoding sequences in a complete genome using Fourier transform. In: IEEE Third International Conference on Natural Computation, Haikou, China (2007), 295–299. DOI: 10.1109/ICNC.2007.333 [Crossref]

About the article

Published Online: 2011-09-29

Published in Print: 2011-12-01



Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-011-0037-1. Export Citation

© 2011 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wen Chen, Jianjun Zhang, and Jinyang Zhang
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 1
[2]
J. A. Tenreiro Machado and António M. Lopes
Nonlinear Dynamics, 2015, Volume 79, Number 1, Page 63
[3]
Miguel F. M. Lima, J. A. Tenreiro Machado, and António C. Costa
Abstract and Applied Analysis, 2012, Volume 2012, Page 1
[4]
[5]
K. Balachandran, V. Govindaraj, M. Rivero, J. A. Tenreiro Machado, and J. J. Trujillo
Abstract and Applied Analysis, 2013, Volume 2013, Page 1
[6]
J. A. Tenreiro Machado, Alexandra M. S. F. Galhano, and Juan J. Trujillo
Scientometrics, 2014, Volume 98, Number 1, Page 577
[7]
J.A. Tenreiro Machado
Applied Mathematical Modelling, 2013, Volume 37, Number 22, Page 9203
[8]
Zheng Xu and Wen Chen
Computers & Mathematics with Applications, 2013, Volume 66, Number 5, Page 677
[9]
J. A. Tenreiro Machado, Carla M. A. Pinto, and A. Mendes Lopes
Mathematical Problems in Engineering, 2013, Volume 2013, Page 1
[10]
Gianni Pagnini, Antonio Mura, and Francesco Mainardi
International Journal of Stochastic Analysis, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.
Log in