Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

The journal celebrates now its 20 years!

IMPACT FACTOR 2016: 2.034
5-year IMPACT FACTOR: 2.359

CiteScore 2016: 2.18

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404

Mathematical Citation Quotient (MCQ) 2015: 0.61

See all formats and pricing
In This Section

Erdélyi-Kober fractional diffusion

Gianni Pagnini
  • CRS4, Center for Advanced Studies, Research and Development in Sardinia, Polaris Bldg. 1, 09010, Pula, CA, Italy
  • Email:
Published Online: 2011-12-29 | DOI: https://doi.org/10.2478/s13540-012-0008-1


The aim of this Short Note is to highlight that the generalized grey Brownian motion (ggBm) is an anomalous diffusion process driven by a fractional integral equation in the sense of Erdélyi-Kober, and for this reason here it is proposed to call such family of diffusive processes as Erdélyi-Kober fractional diffusion. The ggBm is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion. This class is made up of self-similar processes with stationary increments and it depends on two real parameters: 0 < α ≤ 2 and 0 < β ≤ 1. It includes the fractional Brownian motion when 0 < α ≤ 2 and β = 1, the time-fractional diffusion stochastic processes when 0 < α = β < 1, and the standard Brownian motion when α = β = 1. In the ggBm framework, the Mainardi function emerges as a natural generalization of the Gaussian distribution recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.

MSC: Primary 26A33; Secondary 45D05, 60G22, 33E30

Keywords: anomalous diffusion; Erdélyi-Kober fractional integral and derivative; Mainardi function

  • [1] A. Erdélyi, On fractional integration and its applications to the theory of Hankel transforms. Quart. J. Math. Oxford 11, No 1 (1940), 293–303. http://dx.doi.org/10.1093/qmath/os-11.1.293CrossrefGoogle Scholar

  • [2] R. Gorenflo, Yu. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383–414; http://www.math.bas.bg/~fcaa Google Scholar

  • [3] R. Gorenflo, Yu. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, No 1–2 (2000), 175–191. http://dx.doi.org/10.1016/S0377-0427(00)00288-0CrossrefGoogle Scholar

  • [4] R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics 193, (2011), 119–132. http://dx.doi.org/10.1140/epjst/e2011-01386-2CrossrefGoogle Scholar

  • [5] R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: Fractional Dynamics. Recent Advances, World Scientific, Singapore (2011), Chapter 10, 227–261. Google Scholar

  • [6] P. Grigolini, A. Rocco, B.J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 59, No 3 (1999), 2603–2613. http://dx.doi.org/10.1103/PhysRevE.59.2603CrossrefGoogle Scholar

  • [7] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical and J. Wiley, Harlow - N. York (1994). Google Scholar

  • [8] J. Klafter, I.M. Sokolov, Anomalous diffusion spreads its wings. Physics World, August (2005), 29–32. Google Scholar

  • [9] H. Kober, On a fractional integral and derivative. Quart. J. Math. Oxford 11, No 1 (1940), 193–211. http://dx.doi.org/10.1093/qmath/os-11.1.193CrossrefGoogle Scholar

  • [10] Yu. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal. 7, No 3 (2004), 339–364; http://www.math.bas.bg/~fcaa Google Scholar

  • [11] Yu. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249–267; http://www.math.bas.bg/~fcaa Google Scholar

  • [12] B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11, No 11 (2008), 1335–1342. http://dx.doi.org/10.1038/nn.2212CrossrefWeb of ScienceGoogle Scholar

  • [13] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals 7, No 9 (1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5CrossrefGoogle Scholar

  • [14] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). http://dx.doi.org/10.1142/9781848163300CrossrefGoogle Scholar

  • [15] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa Google Scholar

  • [16] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010, (2010), 104505. Google Scholar

  • [17] F. Mainardi, G. Pagnini, The role of the Fox-Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 207, No 2 (2007), 245–257. http://dx.doi.org/10.1016/j.cam.2006.10.014CrossrefGoogle Scholar

  • [18] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459; http://www.math.bas.bg/~fcaa Google Scholar

  • [19] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Gen. 37, No 31 (2004), R161–R208. http://dx.doi.org/10.1088/0305-4470/37/31/R01CrossrefGoogle Scholar

  • [20] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Ph.D. Thesis, University of Bologna (2008); http://amsdottorato.cib.unibo.it/846/1/TesiMuraAntonio.pdf, Now available by Lambert Academic Publishing (2011). Google Scholar

  • [21] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. Funct. 20, No 3 (2009), 185–198. http://dx.doi.org/10.1080/10652460802567517CrossrefWeb of ScienceGoogle Scholar

  • [22] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, No 28 (2008), 285003. http://dx.doi.org/10.1088/1751-8113/41/28/285003CrossrefGoogle Scholar

  • [23] A. Mura, M.S. Taqqu, F. Mainardi, Non-Markovian diffusion equations and processes: Analysis and simulations. Physica A 387, No 21 (2008), 5033–5064. http://dx.doi.org/10.1016/j.physa.2008.04.035Web of ScienceCrossrefGoogle Scholar

  • [24] G. Pagnini, Nonlinear time-fractional differential equations in combustion science. Fract. Calc. Appl. Anal. 14, No 1 (2011), 80–93; http://www.springerlink.com/content/1311-0454/14/1/ http://dx.doi.org/10.2478/s13540-011-0006-8CrossrefGoogle Scholar

  • [25] G. Pagnini, The evolution equation for the radius of a premixed flame ball in fractional diffusive media. Eur. Phys. J. Special Topics 193, (2011), 105–117. http://dx.doi.org/10.1140/epjst/e2011-01385-3CrossrefGoogle Scholar

  • [26] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). Google Scholar

  • [27] A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Physica A 265, No 3–4 (1999), 535–546. http://dx.doi.org/10.1016/S0378-4371(98)00550-0CrossrefGoogle Scholar

  • [28] R.K. Saxena, G. Pagnini, Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case. Physica A 390, No 4 (2011), 602–613. http://dx.doi.org/10.1016/j.physa.2010.10.012CrossrefWeb of ScienceGoogle Scholar

  • [29] E. Scalas, The application of continuous-time random walks in finance and economics. Physica A 362, No 2 (2006), 225–239. http://dx.doi.org/10.1016/j.physa.2005.11.024CrossrefGoogle Scholar

  • [30] W.R. Schneider, Grey noise. In: Stochastic Processes, Physics and Geometry, World Scientific, Teaneck (1990), 676–681. Google Scholar

  • [31] W.R. Schneider, Grey noise. In: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Vol. I, Cambridge University Press, Cambridge (1992), 261–282. Google Scholar

  • [32] I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory. North-Holland Publ., Amsterdam (1966). Google Scholar

  • [33] I.N. Sneddon, The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications, In: Lect. Notes Math. 457, Springer-Verlag, New York (1975), 37–79. CrossrefGoogle Scholar

  • [34] I.N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics. RWN — Polish Sci. Publ., Warszawa-Poznan (1979). Google Scholar

  • [35] I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Pol. B 35, No 4 (2004), 1323–1341. Google Scholar

  • [36] J.A. Tenreiro Machado, And I say to myself: “What a fractional world!”. Fract. Calc. Appl. Anal. 14, No 4 (2011), 635–654; http://www.springerlink.com/content/1311-0454/14/4/ http://dx.doi.org/10.2478/s13540-011-0037-1CrossrefGoogle Scholar

  • [37] B.M. Vinagre, I. Podlubny, A. Hernández, V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, No 3 (2000), 231–248; http://www.math.bas.bg/~fcaa Google Scholar

About the article

Published Online: 2011-12-29

Published in Print: 2012-03-01

Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-012-0008-1.

Export Citation

© 2012 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Roberto Garrappa
Communications in Nonlinear Science and Numerical Simulation, 2016
Phollakrit Thiramanus, Sotiris K Ntouyas, and Jessada Tariboon
Boundary Value Problems, 2015, Volume 2015, Number 1
Gianni Pagnini
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 2
Virginia Kiryakova and Yuri Luchko
Open Physics, 2013, Volume 11, Number 10
L.A-M. Hanna and Yu.F. Luchko
Integral Transforms and Special Functions, 2014, Volume 25, Number 5, Page 359
José Luís da Silva and Mohamed Erraoui
Stochastics An International Journal of Probability and Stochastic Processes, 2015, Volume 87, Number 2, Page 347
Richard Herrmann
Fractional Calculus and Applied Analysis, 2014, Volume 17, Number 4
Łukasz Płociniczak
SIAM Journal on Applied Mathematics, 2014, Volume 74, Number 4, Page 1219
Gianni Pagnini
Physica A: Statistical Mechanics and its Applications, 2014, Volume 409, Page 29
Nils Chr. Framstad
Journal of Environmental Economics and Policy, 2014, Volume 3, Number 1, Page 25
Gianni Pagnini, Antonio Mura, and Francesco Mainardi
International Journal of Stochastic Analysis, 2012, Volume 2012, Page 1

Comments (0)

Please log in or register to comment.
Log in