[1] E.G. Bazhlekova, Duhamel-type representation of the solutions of nonlocal boundary value problems for the fractional diffusion-wave equation. In: “Transform Methods and Special Functions’ Varna 1996” (Proc. 2nd Int. Workshop), Bulgarian Academy of Sciences, Sofia (1998), 32–40. Google Scholar

[2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Heidelberg (2010). Google Scholar

[3] J.L.A. Dubbeldam, A. Milchev, V.G. Rostiashvili, and T.A. Vilgis, Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E
76 (2007), 010801 (R). http://dx.doi.org/10.1103/PhysRevE.76.010801CrossrefGoogle Scholar

[4] R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011). Web of ScienceGoogle Scholar

[5] A. Freed, K. Diethelm, and Yu. Luchko, Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus. NASA’s Glenn Research Center, Ohio (2002). Google Scholar

[6] R. Gorenflo, Yu. Luchko and S. Umarov, On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order. Fract. Calc. Appl. Anal.
3, No 3 (2000), 249–277; http://www.math.bas.bg/~fcaa Google Scholar

[7] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). Google Scholar

[8] J. Kemppainen, Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract. Calc. Appl. Anal.
14, No 3 (2011), 411–418; DOI: 10.2478/s13540-011-0025-5, hfill http://www.springerlink.com/content/1311-0454/14/3/ http://dx.doi.org/10.2478/s13540-011-0025-5CrossrefGoogle Scholar

[9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). Google Scholar

[10] R. Klages, G. Radons, and I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008). Google Scholar

[11] Yu. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl.
374, No 2 (2011), 538–548. http://dx.doi.org/10.1016/j.jmaa.2010.08.048CrossrefGoogle Scholar

[12] Yu. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Intern. Journal on Geomathematics
1, No 2 (2011), 257–276. http://dx.doi.org/10.1007/s13137-010-0012-8CrossrefGoogle Scholar

[13] Yu. Luchko, Some uniqueness and existence results for the initialboundary-value problems for the generalized time-fractional diffusion equation. Comp. and Math. with Appl.
59, No 5 (2010), 1766–1772. http://dx.doi.org/10.1016/j.camwa.2009.08.015CrossrefGoogle Scholar

[14] Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl.
351, No 1 (2009), 218–223. http://dx.doi.org/10.1016/j.jmaa.2008.10.018CrossrefGoogle Scholar

[15] Yu. Luchko, Boundary value problems for the generalized timefractional diffusion equation of distributed order. Fract. Calc. Appl. Anal.
12, No 4 (2009), 409–422; http://www.math.bas.bg/~fcaa Google Scholar

[16] Yu. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal.
2,No 4 (1999), 463–489; http://www.math.bas.bg/~fcaa Google Scholar

[17] Yu. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica
24 (1999), 207–233. Google Scholar

[18] R.L. Magin, Fractional Calculus in Bioengineering: Part1, Part 2 and Part 3. Critical Reviews in Biomedical Engineering
32 (2004), 1–104, 105–193, 195–377. http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10CrossrefGoogle Scholar

[19] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy. World Scientific, Singapore (2010). http://dx.doi.org/10.1142/9781848163300CrossrefGoogle Scholar

[20] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons and Fractals
7(1996), 1461–1477. http://dx.doi.org/10.1016/0960-0779(95)00125-5CrossrefGoogle Scholar

[21] M.M. Meerschaert, E. Nane, and P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab.
37, No 3 (2009), 979–1007. http://dx.doi.org/10.1214/08-AOP426Web of ScienceCrossrefGoogle Scholar

[22] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen.
37 (2004), R161–R208. http://dx.doi.org/10.1088/0305-4470/37/31/R01CrossrefGoogle Scholar

[23] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations. Phys. A
278 (2000), 107–125. http://dx.doi.org/10.1016/S0378-4371(99)00503-8CrossrefGoogle Scholar

[24] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999). Google Scholar

[25] A.V. Pskhu, Partial Differential Equations of Fractional Order. Nauka, Moscow (2005) (in Russian). Google Scholar

[26] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). Google Scholar

[27] P. Pucci and J. Serrin, The Maximum Principle. Birkhäuser, Basel (2007). Google Scholar

[28] V.V. Uchaikin, Method of Fractional Derivatives. Artishok, Ul’janovsk (2008) (in Russian). Google Scholar

[29] V.S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow (1971) (in Russian). Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.