Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 30, 2012

Towards a combined fractional mechanics and quantization

  • Agnieszka Malinowska EMAIL logo and Delfim Torres

Abstract

A fractional Hamiltonian formalism is introduced for the recent combined fractional calculus of variations. The Hamilton-Jacobi partial differential equation is generalized to be applicable for systems containing combined Caputo fractional derivatives. The obtained results provide tools to carry out the quantization of nonconservative problems through combined fractional canonical equations of Hamilton type.

[1] E.M.C. Abreu and C.F.L. Godinho, Fractional Dirac bracket and quantization for constrained systems. Phys. Rev. E 84 (2011), 026608, 8 pp. 10.1103/PhysRevE.84.026608Search in Google Scholar

[2] O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, No 1 (2002), 368–379. http://dx.doi.org/10.1016/S0022-247X(02)00180-410.1016/S0022-247X(02)00180-4Search in Google Scholar

[3] O.P. Agrawal, S.I. Muslih and D. Baleanu, Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 12 (2011), 4756–4767. http://dx.doi.org/10.1016/j.cnsns.2011.05.00210.1016/j.cnsns.2011.05.002Search in Google Scholar

[4] R. Almeida, S. Pooseh and D.F.M. Torres, Fractional variational problems depending on indefinite integrals. Nonlinear Analysis 75, No 3 (2012), 1009–1025. http://dx.doi.org/10.1016/j.na.2011.02.02810.1016/j.na.2011.02.028Search in Google Scholar

[5] R. Almeida and D.F.M. Torres, Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217, No 3 (2010), 956–962. http://dx.doi.org/10.1016/j.amc.2010.03.08510.1016/j.amc.2010.03.085Search in Google Scholar

[6] R. Almeida and D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1490–1500. http://dx.doi.org/10.1016/j.cnsns.2010.07.01610.1016/j.cnsns.2010.07.016Search in Google Scholar

[7] R. Almeida and D.F.M. Torres, Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, No 10 (2011), 3097–3104. http://dx.doi.org/10.1016/j.camwa.2011.03.09810.1016/j.camwa.2011.03.098Search in Google Scholar

[8] D. Baleanu, Fractional Hamiltonian analysis of irregular systems. Signal Process. 86, No 10 (2006), 2632–2636. http://dx.doi.org/10.1016/j.sigpro.2006.02.00810.1016/j.sigpro.2006.02.008Search in Google Scholar

[9] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific Publ. (Ser. on Complexity, Nonlinearity and Chaos, 3), N. Jersey-London-Singapore (2012). Search in Google Scholar

[10] N.R.O. Bastos, R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29, No 2 (2011), 417–437. http://dx.doi.org/10.3934/dcds.2011.29.41710.3934/dcds.2011.29.417Search in Google Scholar

[11] G.S.F. Frederico and D.F.M. Torres, Nonconservative Noether’s theorem in optimal control. Int. J. Tomogr. Stat. 5, No W07 (2007), 109–114. Search in Google Scholar

[12] G.S.F. Frederico and D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53, No 3 (2008), 215–222. http://dx.doi.org/10.1007/s11071-007-9309-z10.1007/s11071-007-9309-zSearch in Google Scholar

[13] G.S.F. Frederico and D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, No 3 (2010), 1023–1033. http://dx.doi.org/10.1016/j.amc.2010.01.10010.1016/j.amc.2010.01.100Search in Google Scholar

[14] H. Goldstein, Classical Mechanics. Addison-Wesley Press, Inc., Cambridge, MA (1951). Search in Google Scholar

[15] A.K. Golmankhaneh, Fractional Poisson bracket. Turk. J. Phys. 32 (2008), 241–250. Search in Google Scholar

[16] M.A.E. Herzallah and D. Baleanu, Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dynam. 58, No 1–2 (2009), 385–391. http://dx.doi.org/10.1007/s11071-009-9486-z10.1007/s11071-009-9486-zSearch in Google Scholar

[17] M.A.E. Herzallah and D. Baleanu, Fractional-order variational calculus with generalized boundary conditions. Adv. Difference Equ. 2011 (2011), Article ID 357580, 9 pp. 10.1155/2011/357580Search in Google Scholar

[18] A.B. Malinowska and D.F.M. Torres, Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl. Math. Comput. 217, No 3 (2010), 1158–1162. http://dx.doi.org/10.1016/j.amc.2010.01.01510.1016/j.amc.2010.01.015Search in Google Scholar

[19] A.B. Malinowska and D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, No 4 (2011), 523–537; DOI: 10.2478/s13540-011-0032-6; http://www.springerlink.com/content/1311-0454/14/4/. 10.2478/s13540-011-0032-6Search in Google Scholar

[20] A.B. Malinowska and D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218, No 9 (2012), 5099–5111. http://dx.doi.org/10.1016/j.amc.2011.10.07510.1016/j.amc.2011.10.075Search in Google Scholar

[21] T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, No 3 (2012), 1507–1515. http://dx.doi.org/10.1016/j.na.2011.01.01010.1016/j.na.2011.01.010Search in Google Scholar

[22] E.M. Rabei and B.S. Ababneh, Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl. 344, No 2 (2008), 799–805. http://dx.doi.org/10.1016/j.jmaa.2008.03.01110.1016/j.jmaa.2008.03.011Search in Google Scholar

[23] E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih and D. Baleanu, The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, No 2 (2007), 891–897. http://dx.doi.org/10.1016/j.jmaa.2006.04.07610.1016/j.jmaa.2006.04.076Search in Google Scholar

[24] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53, No 2 (1996), 1890–1899. http://dx.doi.org/10.1103/PhysRevE.53.189010.1103/PhysRevE.53.1890Search in Google Scholar PubMed

[25] F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E (3) 55, No 3 (1997), Part B, 3581–3592. http://dx.doi.org/10.1103/PhysRevE.55.358110.1103/PhysRevE.55.3581Search in Google Scholar

[26] C.J. Silva and D.F.M. Torres, Absolute extrema of invariant optimal control problems. Commun. Appl. Anal. 10, No 4 (2006), 503–515. Search in Google Scholar

[27] D.F.M. Torres, On the Noether theorem for optimal control. Eur. J. Control 8, No 1 (2002), 56–63. http://dx.doi.org/10.3166/ejc.8.56-6310.3166/ejc.8.56-63Search in Google Scholar

[28] D.F.M. Torres, Gauge symmetries and Noether currents in optimal control. Appl. Math. E-Notes 3 (2003), 49–57. Search in Google Scholar

[29] D.F.M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations. Commun. Pure Appl. Anal. 3, No 3 (2004), 491–500. http://dx.doi.org/10.3934/cpaa.2004.3.49110.3934/cpaa.2004.3.491Search in Google Scholar

[30] D.F.M. Torres and G. Leitmann, Contrasting two transformationbased methods for obtaining absolute extrema. J. Optim. Theory Appl. 137, No 1 (2008), 53–59. http://dx.doi.org/10.1007/s10957-007-9292-z10.1007/s10957-007-9292-zSearch in Google Scholar

Published Online: 2012-6-30
Published in Print: 2012-9-1

© 2012 Diogenes Co., Sofia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.2478/s13540-012-0029-9/html
Scroll to top button