Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 15, Issue 4

Issues

Some generalized fractional calculus operators and their applications in integral equations

Om Agrawal
Published Online: 2012-09-29 | DOI: https://doi.org/10.2478/s13540-012-0047-7

Abstract

In this paper, we survey some generalizations of fractional integrals and derivatives and present some of their properties. Using these properties, we show that many integral equations can be solved in a much elegant way. We believe that this will blur the distinction between the integral and differential equations, and provide a systematic approach for the two of these classes.

MSC: Primary 26A33; Secondary 34A08, 34K37

Keywords: generalized fractional calculus; generalized fractional operators; integral equations; fractional differential equations

  • [1] O. P. Agrawal, Generalized Variational Problems and Euler-Lagrange Equations. Computers and Mathematics with Applications 59, No 5 (2010), 1852–1864. http://dx.doi.org/10.1016/j.camwa.2009.08.029CrossrefGoogle Scholar

  • [2] O. P. Agrawal, S.I. Muslih, D. Baleanu, Generalized variational calculus in terms of multi-parameters derivatives. Commun. Nonlinear Sci. Numer. Simulat. 12 (2011), 4756–4767. http://dx.doi.org/10.1016/j.cnsns.2011.05.002CrossrefGoogle Scholar

  • [3] O. P. Agrawal, Generalized multi-parameter fractional variational calculus. International Journal of Differential Equations, To appear. Google Scholar

  • [4] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). Google Scholar

  • [5] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006). Google Scholar

  • [6] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow, New York (1994). Google Scholar

  • [7] V. Kiryakova, A brief story about the operators of generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 201–218; at http://www.math.bas.bg/~fcaa. Google Scholar

  • [8] Y. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal. 7, No 3 (2004), 339–364; at http://www.math.bas.bg/~fcaa. Google Scholar

  • [9] Y. Luchko, J.J. Trujillo, Caputo type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249–267; at http://www.math.bas.bg/~fcaa. Google Scholar

  • [10] I. Podlubny, Fractional Differential Equations. Academic Press, N. York etc. (1999). Google Scholar

  • [11] A. D. Polyanin and A.V. Manzhirov, Handbook of Integral Equations. 2nd Ed., Chapman & Hall/CRC, Boca Raton, FL (2008). http://dx.doi.org/10.1201/9781420010558CrossrefGoogle Scholar

  • [12] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Longhorne, PA (1993). Google Scholar

About the article

Published Online: 2012-09-29

Published in Print: 2012-12-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 15, Issue 4, Pages 700–711, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-012-0047-7.

Export Citation

© 2012 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Desong Kong, Yufeng Xu, and Zhoushun Zheng
Numerical Methods for Partial Differential Equations, 2019
[2]
Mohammed S. Abdo, Satish K. Panchal, and Hussien Shafei Hussien
Mathematical Modelling and Analysis, 2019, Volume 24, Number 4, Page 564
[3]
Xuhao Li and Patricia J.Y. Wong
Communications in Nonlinear Science and Numerical Simulation, 2019, Page 104991
[4]
Kamlesh Kumar, Rajesh K. Pandey, and Swati Yadav
Physica A: Statistical Mechanics and its Applications, 2019, Volume 535, Page 122271
[5]
Bouteraa Noureddine and Slimane Benaicha
Journal of Mathematical Sciences and Modelling, 2018, Volume 1, Number 1, Page 45
[6]
Qinwu Xu and Zhoushun Zheng
International Journal of Differential Equations, 2019, Volume 2019, Page 1
[7]
Quanguo Zhang, Yaning Li, and Menglong Su
Journal of Mathematical Analysis and Applications, 2018
[8]
Wen Cao, Yufeng Xu, and Zhoushun Zheng
Applied Sciences, 2018, Volume 8, Number 1, Page 42
[9]
Wen Cao, Y Xu, and Zhoushun Zheng
Advances in Difference Equations, 2017, Volume 2017, Number 1
[10]
Ricardo Almeida
Communications in Nonlinear Science and Numerical Simulation, 2017, Volume 44, Page 460
[11]
Yufeng Xu and Om P. Agrawal
Computers & Mathematics with Applications, 2016
[12]
M. Klimek and O.P. Agrawal
Computers & Mathematics with Applications, 2013, Volume 66, Number 5, Page 795
[13]
Ravi P Agarwal, Guotao Wang, Bashir Ahmad, Lihong Zhang, and Aatef Hobiny
Advances in Difference Equations, 2015, Volume 2015, Number 1
[14]
Tatiana Odzijewicz, Agnieszka Malinowska, and Delfim Torres
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 1
[15]
Małgorzata Klimek and Maria Lupa
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 1
[16]
Yufeng Xu and Om Agrawal
Fractional Calculus and Applied Analysis, 2013, Volume 16, Number 3
[17]
Yufeng Xu and Zhimin He
Journal of Applied Mathematics and Computing, 2014, Volume 44, Number 1-2, Page 417
[18]
Virginia Kiryakova and Yuri Luchko
Open Physics, 2013, Volume 11, Number 10
[19]
Yufeng Xu, Zhimin He, and Om P. Agrawal
Computers & Mathematics with Applications, 2013, Volume 66, Number 10, Page 2019
[20]
Yufeng Xu and Om P. Agrawal
Communications in Nonlinear Science and Numerical Simulation, 2013, Volume 18, Number 12, Page 3575
[22]
Om P. Agrawal and Yufeng Xu
Communications in Nonlinear Science and Numerical Simulation, 2015, Volume 23, Number 1-3, Page 129
[23]
Yufeng Xu, Zhimin He, and Qinwu Xu
International Journal of Computer Mathematics, 2014, Volume 91, Number 3, Page 588
[24]
Ravi P. Agarwal, Bashir Ahmad, Ahmed Alsaedi, and Hana Al-Hutami
Abstract and Applied Analysis, 2014, Volume 2014, Page 1
[25]
Lihong Zhang, Bashir Ahmad, and Guotao Wang
Abstract and Applied Analysis, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in