[1] B. Baeumer and M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal.
4, No 4 (2001), 481–500. Google Scholar

[2] B. Baeumer, S. Kurita and M.M. Meerschaert, Inhomogeneous fractional diffusion eqautions. Fract. Calc. Appl. Anal., 8, No 4 (2005), 371–376; at http://www.math.bas.bg/~fcaa. Google Scholar

[3] D. Bolster, M.M. Meerschaert and A. Sikorskii, Product rule for vector fractional derivatives. Fract. Calc. Appl. Anal.
15, No 3 (2012), 463–478; DOI:10.2478/s13540-012-0033-0; at http://link.springer.com/article/10.2478/s13540-012-0033-0. CrossrefGoogle Scholar

[4] W. Chen, S. Holm, Modified Szabo’s wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am.
114 (2003), 2570–2754. http://dx.doi.org/10.1121/1.1621392CrossrefGoogle Scholar

[5] W. Deng, C. Li, Q. Guo, Analysis of fractional differential equations with multi-orders. Fractals
15, No 2 (2007), 173–182. http://dx.doi.org/10.1142/S0218348X07003472CrossrefGoogle Scholar

[6] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear Dynamics
48, No 4 (2007), 409–416. http://dx.doi.org/10.1007/s11071-006-9094-0CrossrefGoogle Scholar

[7] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin etc. (2010). http://dx.doi.org/10.1007/978-3-642-14574-2CrossrefGoogle Scholar

[8] F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press (1990). Google Scholar

[9] Y. Gu, P. Zhuang, F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Computer Modeling in Eng. & Sciences
56 (2010), 303–334. Google Scholar

[10] M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (I). Fract. Calc. Appl. Anal., 8, No 3 (2005), 323–341; at http://www.math.bas.bg/~fcaa. Google Scholar

[11] M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) — with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9, No 4 (2006), 333–349; at http://www.math.bas.bg/~fcaa. Google Scholar

[12] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl.
389 (2012), 1117–1127. http://dx.doi.org/10.1016/j.jmaa.2011.12.055CrossrefGoogle Scholar

[13] J.K. Kelly, R.J. McGough, M.M. Meerschaert, Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am.
124 (2008), 2861–2872. http://dx.doi.org/10.1121/1.2977669CrossrefWeb of ScienceGoogle Scholar

[14] C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal.
15, No 3 (2012), 383–406; DOI:10.2478/s13540-012-0028-x; at http://link.springer.com/article/10.2478/s13540-012-0028-x CrossrefGoogle Scholar

[15] M. Liebler, S. Ginter, T. Dreyer, R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am.
116 (2004), 2742–2750. http://dx.doi.org/10.1121/1.1798355CrossrefGoogle Scholar

[16] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comp. Appl. Math.
166 (2004), 209–219. http://dx.doi.org/10.1016/j.cam.2003.09.028CrossrefGoogle Scholar

[17] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrag, Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation. J. Comp. Appl. Math.
191 (2007), 12–20. http://dx.doi.org/10.1016/j.amc.2006.08.162CrossrefGoogle Scholar

[18] F. Liu, C. Yang, K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comp. Appl. Math.
231 (2009), 160–176. http://dx.doi.org/10.1016/j.cam.2009.02.013CrossrefGoogle Scholar

[19] F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models. Computers and Math. with Appl.
63 (2012), 1–22. http://dx.doi.org/10.1016/j.camwa.2011.09.022CrossrefGoogle Scholar

[20] Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Lévy- Feller advection-dispersion process by random walk and finite difference method. J. Comp. Phys.
222 (2007), 57–70. http://dx.doi.org/10.1016/j.jcp.2006.06.005CrossrefGoogle Scholar

[21] Q. Liu, Y. Gu, P. Zhuang, F. Liu, Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech.
48 (2011), 1–12. http://dx.doi.org/10.1007/s00466-011-0573-xCrossrefWeb of ScienceGoogle Scholar

[22] Y. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl.
374 (2011), 538–548. http://dx.doi.org/10.1016/j.jmaa.2010.08.048CrossrefGoogle Scholar

[23] M.M. Meerschaert and H.P. Scheffler, Semistable Lévy motion. Fract. Calc. Appl. Anal., 5, No 1 (2002), 27–54. Google Scholar

[24] M.M. Meerschaert, J. Mortensen, H.P. Scheffler, Vector Grünwald formula for fractional derivatives. Fract. Calc. Appl. Anal.
7, No 1 (2004), 61–82. Google Scholar

[25] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math.
172 (2004), 65–77. http://dx.doi.org/10.1016/j.cam.2004.01.033CrossrefGoogle Scholar

[26] M.M. Meerschaert, P. Straka, Y. Zhou, R.J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics
70 (2012), 1273–1281. http://dx.doi.org/10.1007/s11071-012-0532-xWeb of ScienceCrossrefGoogle Scholar

[27] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.
339 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3CrossrefGoogle Scholar

[28] I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). Google Scholar

[29] J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comp. Appl. Math.
193 (2006), 243–268. http://dx.doi.org/10.1016/j.cam.2005.06.005CrossrefGoogle Scholar

[30] R. Schumer, D.A. Benson, M.M Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport. Water Resources Researces
39 (2003), 1296–1307. Google Scholar

[31] S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numerical Algorithm
56 (2011), 383–404. http://dx.doi.org/10.1007/s11075-010-9393-xCrossrefGoogle Scholar

[32] M. Stojanovic, Numerical method for solving diffusion-wave phenomena. J. Comp. Appl. Math.
235 (2011), 3121–3137. http://dx.doi.org/10.1016/j.cam.2010.12.010CrossrefGoogle Scholar

[33] P. Straka, M.M. Meerschaert, R.J. McGough, and Y. Zhou, Fractional wave equations with attenuation. Fract. Calc. Appl. Anal.
16, No 1 (2013), 262–272 (same issue); DOI:10.2478/s13540-013-0016-9; at http://link.springer.com/journal/13540. CrossrefGoogle Scholar

[34] T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am.
96 (1994), 491–500. http://dx.doi.org/10.1121/1.410434CrossrefGoogle Scholar

[35] C. Yang, F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system. ANZIAM J.
47 (2006), 168–184. Google Scholar

[36] Y. Zhang, D.A. Benson, D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Advances in Water Resources
32 (2009), 561–581. http://dx.doi.org/10.1016/j.advwatres.2009.01.008Web of ScienceCrossrefGoogle Scholar

[37] F. Zhang, C. Li, Stability analysis of fractional differential systems with order lying in (1,2). Advances in Difference Equations (2011), ID 213485. Google Scholar

[38] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable order fractional advection diffusion equation with a nonlinear source term. SIAM J. Numer. Anal.
47 (2009), 1760–1781. http://dx.doi.org/10.1137/080730597CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.