[1] O.P. Agrawal, Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl.
59, No 5 (2010), 1852–1864. http://dx.doi.org/10.1016/j.camwa.2009.08.029CrossrefGoogle Scholar

[2] O.P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal.
15, No 4 (2012), 700–711; DOI:10.2478/s13540-012-0047-7; at http://link.springer.com/article/10.2478/s13540-012-0047-7. CrossrefGoogle Scholar

[3] R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys.
51 (2010), 033503, 12 pp. http://dx.doi.org/10.1063/1.3319559Web of ScienceCrossrefGoogle Scholar

[4] D.L. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edition. Springer (1998). Google Scholar

[5] J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys.
48 (2007), 033504, 34 pp. http://dx.doi.org/10.1063/1.2483292CrossrefGoogle Scholar

[6] G.G. Emch, C. Liu, The Logic and Thermostatical Physics. Springer-Verlag, New York (2002). http://dx.doi.org/10.1007/978-3-662-04886-3CrossrefGoogle Scholar

[7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006). Google Scholar

[8] V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, 301, Longman Sci. Tech., Harlow & J. Wiley, N. York (1994). Google Scholar

[9] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. The Publ. Office of Czenstochowa University of Technology, Czestochowa (2009). Google Scholar

[10] A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations. Imperial College Press, London & World Scientific Publishing, Singapore (2012). Google Scholar

[11] T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl.
64, No 10 (2012), 3351–3366. http://dx.doi.org/10.1016/j.camwa.2012.01.073Web of ScienceCrossrefGoogle Scholar

[12] T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal.
2012 (2012), 871912, 24 pp. Google Scholar

[13] T. Odzijewicz, D.F.M. Torres, Fractional calculus of variations for double integrals. Balkan J. Geom. Appl.
16, No 2 (2011), 102–113. Google Scholar

[14] I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA (1999). Google Scholar

[15] S. Russenschuck, Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2010). http://dx.doi.org/10.1002/9783527635467CrossrefGoogle Scholar

[16] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993); Transl. and updated from the 1987 Russian original. Google Scholar

[17] C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound. Springer-Verlag (2007). Google Scholar

[18] V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Ann. Physics
323, No 11 (2008), 2756–2778. http://dx.doi.org/10.1016/j.aop.2008.04.005CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.