[1] R. P. Agarwal, Y. Zhou, and Y. He, Existence of fractional neutral functional differential equations. Computers and Math. with Appl. 59 (2010), 1095–1100. http://dx.doi.org/10.1016/j.camwa.2009.05.010CrossrefGoogle Scholar

[2] H. K. Avad and A. V. Glushak, On perturbations of abstract fractional differential equations by nonlinear operators. J. of Mathematical Sciences
170, No 3 (2010), 306–323. http://dx.doi.org/10.1007/s10958-010-0087-7CrossrefGoogle Scholar

[3] A. Babakhani and D. Baleanu, Employing of some basic theory for class of fractional differential equations. Advances in Difference Equations
2011 (2011), 1–13. http://dx.doi.org/10.1155/2011/296353CrossrefGoogle Scholar

[4] B. Baeumer, M. M. Meerschaert, and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009), 3915–3930. http://dx.doi.org/10.1090/S0002-9947-09-04678-9CrossrefGoogle Scholar

[5] D. Baleanu, Z. B. Güvenç, and J. A. Tenreiro Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010. Google Scholar

[6] R. Caponetto, G. Dongola, L. Fortuna, and I. Petráš, Fractional Order Systems: Modeling and Control Applications. Vol. 72 of World Sci. Ser. on Nonlinear Science, World Scientific, 2010. Google Scholar

[7] G. Chai, Existence results for boundary value problems of nonlinear fractional differential equations. Computers and Math. with Appl. 62 (2011), 2374–2382. http://dx.doi.org/10.1016/j.camwa.2011.07.025CrossrefGoogle Scholar

[8] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, 2010. Google Scholar

[9] D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Review E: Stat., Nonlinear and Soft Matter Physics
77 (2008), 021122–021122. http://dx.doi.org/10.1103/PhysRevE.77.021122CrossrefGoogle Scholar

[10] K. M. Furati, A Cauchy-type problem involving a weighted sequential derivative. In: The 5th IFAC Symp. on Fractional Differentiation and its Applications (FDA12), Nanjing, China, 2012. Google Scholar

[11] K. M. Furati, A Cauchy-type problem with a sequential fractional derivative in the space of continuous functions. Boundary Value Problems
2012 (2012), 58 (14 pages); doi:10.1186/1687-2770-2012-58. CrossrefGoogle Scholar

[12] K. M. Furati, M. D. Kassim, and N. e. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers and Math. with Appl. (2012), In press. Google Scholar

[13] E. Gerolymatou, I. Vardoulakis, and R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model. J. of Physics D: Applied Physics
39 (2006), 4104–4110. http://dx.doi.org/10.1088/0022-3727/39/18/022CrossrefGoogle Scholar

[14] A. V. Glushak, Cauchy-type problem for an abstract differential equation with fractional derivatives. Mathematical Notes
77, No 1 (2005), 26–38; Transl. from Matemat. Zametki
77, No 1 (2005), 28–41. http://dx.doi.org/10.1007/s11006-005-0003-5CrossrefWeb of ScienceGoogle Scholar

[15] A. V. Glushak, On the properties of a Cauchy-type problem for an abstract differential equation with fractional derivatives. Mathematical Notes
82, No 5 (2007), 596–607; Transl. from Matemat. Zametki
82, No 5 (2007), 665–677. http://dx.doi.org/10.1134/S000143460711003XCrossrefWeb of ScienceGoogle Scholar

[16] A. V. Glushak, Correctness of Cauchy-type problems for abstract differential equations with fractional derivatives. Russian Mathematics
53, No 9 (2009), 0–19. Transl. from Izvestiya Vysshikh Uchebn. Zaved., Matematika No 9 (2009), 13–24. http://dx.doi.org/10.3103/S1066369X09090023CrossrefGoogle Scholar

[17] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. Google Scholar

[18] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics
284 (2002), 399–408. http://dx.doi.org/10.1016/S0301-0104(02)00670-5CrossrefGoogle Scholar

[19] R. Hilfer and L. Anton, Fractional master equations and fractal time random walks. Phys. Review E
51 (1995), R848–R851. http://dx.doi.org/10.1103/PhysRevE.51.R848CrossrefGoogle Scholar

[20] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204 of Mathematics Studies Ser., Elsevier, Amsterdam, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0CrossrefGoogle Scholar

[21] M. Kirane and S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations. Nonlinear Analysis
73 (2010), 3723–3736. http://dx.doi.org/10.1016/j.na.2010.06.088CrossrefGoogle Scholar

[22] V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Res. Notes in Math. Ser. No 301, Longman & J. Wiley Ltd., Harlow — New York, 1994. Google Scholar

[23] V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203–220; at http://www.math.bas.bg/~fcaa. Google Scholar

[24] R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim, 2008. Google Scholar

[25] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems. Cambridge Scientific Publ., Cambridge, 2009. Google Scholar

[26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010. http://dx.doi.org/10.1142/p614CrossrefGoogle Scholar

[27] F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 10, No 3 (2007), 269–308; at http://www.math.bas.bg/~fcaa. Google Scholar

[28] A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Res. Notes in Math. Ser., Longman Sci. Techn., Harlow, 1979. Google Scholar

[29] M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, Vol. 43 of De Gruyter Studies in Mathematics, De Gruyter, Berlin, 2012. Google Scholar

[30] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports
339, No 1 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3CrossrefGoogle Scholar

[31] M. W. Michalski, Derivatives of Noninteger Order and their Applications. PhD Thesis, Polska Akademia Nauk, 1993. Google Scholar

[32] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., 1993. Google Scholar

[33] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-Order Systems and Controls. Advances in Industrial Control, Springer, 2010. Google Scholar

[34] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Vol. 84 of Lecture Notes in Electrical Engineering, Springer, 2011. Google Scholar

[35] B. G. Pachpatte, Inequalities for Differential and Integral Equations. Vol. 197 of Mathematics in Science and Engineering, Acad. Press, 1998. Google Scholar

[36] I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, 2011. Google Scholar

[37] I. Podlubny, Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering, Acad. Press, 1999. Google Scholar

[38] B. L. S. P. Rao, Statistical Inference for Fractional Diffusion Processes. Wiley, 2010. Google Scholar

[39] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993; Engl. Trans. from the Russian Ed., 1987. Google Scholar

[40] T. Sandev and Ž. Tomovski, General time fractional wave equation for a vibrating string. J. of Physics A: Math. and Theoretical 43 (2010), 055204. http://dx.doi.org/10.1088/1751-8113/43/5/055204CrossrefGoogle Scholar

[41] E. Scalas, R. Gorenflo, and F. Mainardi, Fractional calculus and continuous-time finance. Physica A
284 (2000), 376–384. http://dx.doi.org/10.1016/S0378-4371(00)00255-7CrossrefGoogle Scholar

[42] E. Scalas, R. Gorenflo, F. Mainardi, and M. Meerschaert, Speculative option valuation and the fractional diffusion equation. In: J. Sabatier and J. T. Machado (Eds.), Proc. IFAC Workshop on Fractional Differentiation and its Applications (FDA 04), Bordeaux, 2004. Google Scholar

[43] T. Wenchang, P. Wenxiao, and X. Mingyu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Intern. J. of Non-Linear Mechanics
38 (2003), 645–650. http://dx.doi.org/10.1016/S0020-7462(01)00121-4CrossrefGoogle Scholar

[44] S. Zhang and X. Su, The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order. Computers and Math. with Appl. 62 (2011), 1269–1274. http://dx.doi.org/10.1016/j.camwa.2011.03.008CrossrefGoogle Scholar

[45] Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, and H. P. Scheffler, Random walk approximation of fractional-order multiscaling anomalous diffusion. Physical Review E
74 (2006), 026706–026715. http://dx.doi.org/10.1103/PhysRevE.74.026706CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.