Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2017: 2.865
5-year IMPACT FACTOR: 3.323

CiteScore 2017: 3.06

SCImago Journal Rank (SJR) 2017: 1.967
Source Normalized Impact per Paper (SNIP) 2017: 1.954

Mathematical Citation Quotient (MCQ) 2017: 0.98

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 16, Issue 1

Issues

Differentiation similarities in fractional pseudo-state space representations and the subspace-based methods

Rachid Malti / Magalie Thomassin
Published Online: 2012-12-27 | DOI: https://doi.org/10.2478/s13540-013-0017-8

Abstract

The paper starts by presenting a new concept of differentiation similarity transformations for commensurate pseudo-states-space representations. It is proven that a pseudo-state-space representation with a commensurate differentiation order ν and a dimension of the transition matrix n can be similar to a pseudo-state-space representation with a commensurate order ν/k and a dimension of the transition matrix kn, where k is an integer number. A direct consequence of the aforementioned concept in fractional subspace-based identification methods for MIMO systems is that an overestimated pseudo-state-space representation has multiple minimums at commensurate differentiation orders over the integral number k. This result is especially visible when deterministic input/output signals are considered and less visible in the stochastic case due to overestimation.

MSC: Primary 26A33; Secondary 93B30

Keywords: similarity transformation; fractional calculus; subspace method; pseudo-state-space representation; system identification

  • [1] M. Aoun, R. Malti, F. Levron and A. Oustaloup, Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dynamics 38 (2004), 117–131. http://dx.doi.org/10.1007/s11071-004-3750-zCrossrefGoogle Scholar

  • [2] T. Bastogne, H. Garnier and P. Sibille, A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process. International Journal of Control 74, No 2 (2001), 118–132. http://dx.doi.org/10.1080/00207170150203471CrossrefGoogle Scholar

  • [3] J.-L. Battaglia, O. Cois, L. Puigsegur and A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model. Int. J. of Heat and Mass Transfer 44, No 14 (2001), 2671–2680. http://dx.doi.org/10.1016/S0017-9310(00)00310-0CrossrefGoogle Scholar

  • [4] M. Bettayeb and S. Djennoune, A note on the controllability and the observability of fractional dynamical systems. In: 2nd IFAC Workshop on Fractional Differentiation and its Applications (FDA), Porto, Portugal (2006). Google Scholar

  • [5] H. Garnier and L. Wang (Eds.), Identification of Continuous-Time Models from Sampled Data. Springer (2008). Google Scholar

  • [6] B.R.J. Haverkamp, C.T. Chou, M. Verhaegen and R. Johansson, Identification of continuous-time MIMO state space models from sampled data, in the presence of process and measurement noise. In: Proc. of the 35th Conference on Decision and Control, Kobe, Japan (1996). Google Scholar

  • [7] R. Hotzel and M. Fliess, On linear systems with a fractional derivation: Introductory theory and examples. Mathematics and Computers in Simulation 45 (1998), 385–395. http://dx.doi.org/10.1016/S0378-4754(97)00118-3CrossrefGoogle Scholar

  • [8] R. Johansson, M. Verhaegen and C.T. Chou, Stochastic theory of continuous-time state-space identification. In: Proc. of the 36th Conference on Decision and Control, San Diego, California, USA (1997). Google Scholar

  • [9] R. Johansson, M. Verhaegen and C.T. Chou, Stochastic theory of continuous-time state-space identification. IEEE Trans. Signal Processing 47, No 1 (1999), 41–51. http://dx.doi.org/10.1109/78.738238CrossrefGoogle Scholar

  • [10] T. Katayama, Subspace Methods for System Identification. Springer (2005). Google Scholar

  • [11] W. Li, H. Raghavan and S. Shah, Subspace identification of continuous time models for process fault detection and isolation. Journal of Process Control 13 (2003), 407–421. http://dx.doi.org/10.1016/S0959-1524(02)00066-5CrossrefGoogle Scholar

  • [12] D. Matignon, Stability properties for generalized fractional differential systems. In: ESAIM: Proc. “Fractional Differential Systems: Models, Methods and Applications”, Vol. 5 (1998), 145–158. Google Scholar

  • [13] D. Matignon and B. d’Andréa Novel, Some results on controllability and observability of finite-dimensional fractional differential systems. In: IMACS, IEEE-SMC, Lille, France, Vol. 2 (1996), 952–956. Google Scholar

  • [14] D. Matignon and B. d’Andréa Novel, Observer-based controllers for fractional differential systems. In: 36th IEEE Conference on Decision and Control, IEEE (1997), 4967–4972. Google Scholar

  • [15] G. Mercère, R. Ouvrard, M. Gilson and H. Garnier, Subspace-based methods for continuous-time model identification of MIMO systems from filtered sampled data. In: Proc. of the European Control Conference, Kos, Greece (2007). Google Scholar

  • [16] A. Ohsumi, K. Kameyama and K.-I. Yamaguchi, Subspace identification for continuous-time stochastic systems via distribution-based approach. Automatica 38 (2002), 63–79. http://dx.doi.org/10.1016/S0005-1098(01)00190-XCrossrefGoogle Scholar

  • [17] K.B. Oldham and J. Spanier, Diffusive transport to planar, cylindrical and spherical electrodes. Electroanal. Chem. Interfacial Electrochem. 41 (1973), 351–358. http://dx.doi.org/10.1016/S0022-0728(73)80413-9CrossrefGoogle Scholar

  • [18] A. Oustaloup, La dérivation non entière. Théorie, synthèse et applications. Hermès, Paris (1995). Google Scholar

  • [19] J. Sabatier, Ch. Farges, M. Merveillaut and L. Feneteau, On observability and pseudo state estimation of fractional order systems. European Journal of Control 18, No 3 (2012), 260–271; doi:10.3166/ejc.18.260-271. http://dx.doi.org/10.3166/ejc.18.260-271CrossrefGoogle Scholar

  • [20] J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot and P. Roy, Fractional system identification for lead acid battery sate charge estimation. Signal Processing 86, No 10 (2006), 2645–2657. http://dx.doi.org/10.1016/j.sigpro.2006.02.030CrossrefGoogle Scholar

  • [21] M. Thomassin and R. Malti, Multivariable identification of continuoustime fractional system. In: ASME IDETC/CIE Conferences, San Diego, CA-USA (2009), DETC2009–86984. Google Scholar

  • [22] M. Thomassin and R. Malti, Subspace method for continuous-time fractional system identification. In: Proc. of the 15th IFAC Symp. on System Identification (SYSID 2009). Saint-Malo, France (2009). Google Scholar

  • [23] M. Verhaegen, Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30 (1994), 61–74. http://dx.doi.org/10.1016/0005-1098(94)90229-1CrossrefGoogle Scholar

  • [24] M. Viberg, Subspace-based methods for the identification of linear time-invariant systems. Automatica 31, No 12 (1995), 1835–1851. http://dx.doi.org/10.1016/0005-1098(95)00107-5CrossrefGoogle Scholar

About the article

Published Online: 2012-12-27

Published in Print: 2013-03-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 16, Issue 1, Pages 273–287, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-013-0017-8.

Export Citation

© 2013 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Elena Ivanova, Rachid Malti, and Xavier Moreau
Nonlinear Dynamics, 2016, Volume 84, Number 4, Page 2057
[3]
Manel Chetoui, Magalie Thomassin, Rachid Malti, Mohamed Aoun, Slaheddine Najar, Mohamed Naceur Abdelkrim, and Alain Oustaloup
Computers & Mathematics with Applications, 2013, Volume 66, Number 5, Page 860

Comments (0)

Please log in or register to comment.
Log in