Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 16, Issue 2

Issues

Science metrics on fractional calculus development since 1966

J. Tenreiro Machado
  • Dept. of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra Galhano
  • Dept. of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Trujillo
Published Online: 2013-03-19 | DOI: https://doi.org/10.2478/s13540-013-0030-y

Abstract

During the last fifty years the area of Fractional Calculus verified a considerable progress. This paper analyzes and measures the evolution that occurred since 1966.

MSC: Primary 26A33; Secondary 01A90, 01A60, 01A61

Keywords: fractional calculus; science metrics

  • [1] S. Abbas, M. Benchohra, G. M. N’Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, Vol. 27. Springer, New York (2012). http://dx.doi.org/10.1007/978-1-4614-4036-9CrossrefGoogle Scholar

  • [2] G. A. Anastassiou, Fractional Differentiation Inequalities. Springer, New York, Heidelberg (2009). http://dx.doi.org/10.1007/978-0-387-98128-4CrossrefGoogle Scholar

  • [3] M. H. Annaby, Z.S. Mansour, q-Fractional Calculus and Euations, Lecture Notes in Mathematics, Vol. 2056. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-30898-7CrossrefGoogle Scholar

  • [4] P. Arena, R. Caponetto, M. Porto, L. Fortuna, Nonlinear Noninteger Order Systems: Theory and Applications, Nonlinear Science. World Scientific Publishing Company, Singapore (2001). Google Scholar

  • [5] S. Al-Azawi, Some Results in Fractional Calculus. LAP Lambert Acad. Publ. (2011). Google Scholar

  • [6] O. G. Bakunin, Turbulence and Diffusion: Scaling Versus Equations, Springer Series in Synergetics. Springer-Verlag, Berlin, Heidelberg (2008). Google Scholar

  • [7] D. Baleanu, Z.B. Guvenç, J. Tenreiro Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications. Springer,, Dordrecht (2010). Google Scholar

  • [8] D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo (Eds.), Fractional Dynamics and Control. Springer, New York (2011). Google Scholar

  • [9] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing Company, Singapore (2012). Google Scholar

  • [10] Y. A. Brychkov, Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. Chapman and Hall/CRC, Boca Raton (2009). Google Scholar

  • [11] R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional Order Systems: Modeling and Control Applications. World Scientific,, Singapore (2010). Google Scholar

  • [12] M. Caputo, Elasticitá e Dissipazione. Zanichelli, Bologna (1969). Google Scholar

  • [13] M. Caputo, Lectures on Seismology and Rheological Tectonics. Lecture Notes, Universitá La Sapienza, Dipartimento di Fisica, Roma (1992). Google Scholar

  • [14] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics. (CISM International Centre for Mechanical Sciences), Springer, Wien (1997). Google Scholar

  • [15] S. Das, Functional Fractional Calculus for System Identification and Controls. Springer-Verlag, Berlin, Heidelberg (2009). Google Scholar

  • [16] S. Das, I. Pan, Fractional Order Signal Processing: Introductory Concepts and Applications, SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-23117-9CrossrefGoogle Scholar

  • [17] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-14574-2CrossrefGoogle Scholar

  • [18] S. Dugowson, Les différentielles métaphysiques (histoire et philosophie de la généralisation de l’ordre de dérivation), PhD, Thèse. Université Paris Nord, Paris, France (1994). Google Scholar

  • [19] M. M. Dzherbashyan, Integral Transforms and Representations of Functions in Complex Domain. Nauka, Moscow (1966), In Russian. Google Scholar

  • [20] W. Elmenreich, J. Tenreiro Machado, I.J. Rudas (Ed.), Intelligent Systems at the Service of Mankind, Vol. 2. Ubooks Verlag, Neusäss (2005). Google Scholar

  • [21] R. Ferrari, A.J. Manfroi, W.R. Young, Strongly and weakly self-similar diffusion. Physica D 154 (2001) 111–137. http://dx.doi.org/10.1016/S0167-2789(01)00234-2CrossrefGoogle Scholar

  • [22] A. Freed, K. Diethelm, Yu. Luchko, Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus. First annual report, NASA/TM 2002-211914, NASA’s Glenn Research Center, Brook Rark, Ohio (2002). Google Scholar

  • [23] R. Gorenflo, S. Vessella, Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, Vol. 1461, Springer, Berlin (1991). Google Scholar

  • [24] H. J. Haubold, A.M. Mathai (Ed.), Proceedings of the Third UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science: National Astronomical Observatory of Japan (Astrophysics and Space Science Proceedings). Springer, Berlin (2010). Google Scholar

  • [25] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Publishing Company, Singapore (2011). http://dx.doi.org/10.1142/9789814340250CrossrefGoogle Scholar

  • [26] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000). Google Scholar

  • [27] N. Jacob, Pseudo-Differential Operators and Markov Processes: Fourier Analysis and Semigroups, Vol. 1. World Scientific Publishing Company, Singapore (2002). Google Scholar

  • [28] N. Jacob, Pseudo Differential Operators & Markov Processes: Generators and Their Potential Theory, Vol. 2. World Scientific Publishing Company, Singapore (2002). http://dx.doi.org/10.1142/9781860949562CrossrefGoogle Scholar

  • [29] N. Jacob, Pseudo Differential Operators & Markov Processes: Markov Processes and Applications, Vol. 3. Imperial College Press, London (2005). http://dx.doi.org/10.1142/9781860947155CrossrefGoogle Scholar

  • [30] Z. Jiao, Y. Q. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. SpringerBriefs in Electrical and Computer Engineering, Springer, London (2012). http://dx.doi.org/10.1007/978-1-4471-2852-6CrossrefGoogle Scholar

  • [31] R. N. Kalia (Ed.), Recent Advances in Fractional Calculus, (Global Research Notes in Mathematics Ser.). Global Publ. Co, Minnesota (1993). Google Scholar

  • [32] A. A. Kilbas, M. Saigo, H-Transforms: Theory and Applications, Series on Analytic Methods and Special Functions, Vol. 9. CRC Press, Boca Raton (2004). http://dx.doi.org/10.1201/9780203487372CrossrefGoogle Scholar

  • [33] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204. Elsevier, Amsterdam (2006). http://dx.doi.org/10.1016/S0304-0208(06)80001-0CrossrefGoogle Scholar

  • [34] A. Kilbas, S. Rogosin (Eds.), Analytic Methods of Analysis and Differential Equations: AMADE-2006, Cambridge Scientific Publishers, Cambridge (2008). Google Scholar

  • [35] A. A. Kilbas, S. V. Rogosin (Eds.), Analytic Methods of Analysis and Differential Equations: AMADE 2009. Cambridge Scientific Publishers, Cambridge (2012). Google Scholar

  • [36] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics, Vol. 301, Longman Sci. Tech. & J. Wiley, New York (1994). Google Scholar

  • [37] J. Klafter, S.C. Lim, R. Metzler (Eds.), Fractional Dynamics: Recent Advances. World Scientific Publ. Co., Singapore (2011). Google Scholar

  • [38] J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications. Oxford University Press, Oxford (2011). Google Scholar

  • [39] R. Klages, G.R. Radons, I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008). Google Scholar

  • [40] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. Czestochowa University of Technology, Czestochowa (2009). Google Scholar

  • [41] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009). Google Scholar

  • [42] A. Le Méhauté, J. Tenreiro Machado, J.C. Trigeassou, J. Sabatier (Eds.), Fractional Differentiation and its Applications. Ubooks Verlag, Neusäss (2005). Google Scholar

  • [43] J. S. Leszczyanski, An Introduction to Fractional Mechanics. Czestochowa University of Technology, Czestochowa (2011). Google Scholar

  • [44] A. C.J. Luo, V.S. Afraimovich (Eds.), Long-range Interaction, Stochasticity and Fractional Dynamics — Dedication to George M. Zaslavsky (1935–2008). Higher Education Press and Springer, Beijing and Dordrecht (2010). Google Scholar

  • [45] A. J. Lotka, The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences 16, No 12 (1926), 317–324. Google Scholar

  • [46] Y. C. Ying Luo, Fractional Order Motion Controls. JohnWiley & Sons, New York (2012). Google Scholar

  • [47] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 13, No 3 (2010), 329–334. Google Scholar

  • [48] J. A. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal. 13, No 4 (2010), 447–454. Google Scholar

  • [49] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulations 16, No 3 (2011), 1140–1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027CrossrefGoogle Scholar

  • [50] J. Tenreiro Machado, A.C.J. Luo, R.S. Barbosa, M.S. Silva, L.B. Figueiredo (Eds.), Nonlinear Science and Complexity. Springer, Dordrecht (2010). Google Scholar

  • [51] J. Tenreiro Machado, B. Patkái, I.J. Rudas (Eds.), Intelligent Engineering Systems and Computational Cybernetics. Springer, New York (2009). http://dx.doi.org/10.1007/978-1-4020-8678-6CrossrefGoogle Scholar

  • [52] R. L. Magin, Fractional Calculus in Bioengineering. Begell House Inc., Redding, CT (2006). Google Scholar

  • [53] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010). http://dx.doi.org/10.1142/p614CrossrefGoogle Scholar

  • [54] A. B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations. Imperial College Press, Singapore (2012). Google Scholar

  • [55] T. Margulies, Mathematics and Science Applications and Frontiers: With Fractional Calculus. Xlibris Corporation, USA (2008). Google Scholar

  • [56] A. M. Mathai, R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics. Springer, Heidelberg (1973). Google Scholar

  • [57] A. M. Mathai, R.K. Saxena, The H-function with Applications in Statistics and Other Disciplines. Wiley Eastern Ltd, New Delhi (1978). Google Scholar

  • [58] A. M. Mathai, H.J. Haubold, Special Functions for Applied Scientists. Springer, New York (2008). http://dx.doi.org/10.1007/978-0-387-75894-7CrossrefGoogle Scholar

  • [59] A. M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications. Springer, New York (2009). Google Scholar

  • [60] A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Press, San Francisco (1979). Google Scholar

  • [61] A. C. McBride, G.F. Roach (Eds.), Fractional Calculus (Proc. of International Conference held in Ross Priory, University of Strathclyde, Scotland, August 1984). Research Notes in Mathematics No. 138, Pitman, London (1985). Google Scholar

  • [62] M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, de Gruyter Studies in Mathematics. Walter de Gruyter & Co, Berlin (2011). http://dx.doi.org/10.1515/9783110258165CrossrefGoogle Scholar

  • [63] A. Le Méhauté, R.R. Nigmatullin, L. Nivanen, Flèches du temps et géométrie fractale. Hermès, Paris (1998). Google Scholar

  • [64] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993). Google Scholar

  • [65] C. A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractionalorder Systems and Controls, Series Advances in Industrial Control. Springer, London (2010). http://dx.doi.org/10.1007/978-1-84996-335-0CrossrefGoogle Scholar

  • [66] G. E. Moore, Cramming more components onto integrated circuits. Electronics 38, No 8 (1965), 114–117. Google Scholar

  • [67] A. M. Nakhushev, Fractional Calculus and its Applications. Fizmatlit, Moscow (2003), In Russian. Google Scholar

  • [68] K. Nishimoto, Fractional Calculus, Vol. 1. Descartes Press, Koriyama (1984). Google Scholar

  • [69] K. Nishimoto, Fractional Calculus, Vol. 2. Descartes Press, Koriyama (1987). Google Scholar

  • [70] K. Nishimoto, Fractional Calculus, Vol. 3. Descartes Press, Koriyama (1989). Google Scholar

  • [71] K. Nishimoto, Fractional Calculus, Vol. 4. Descartes Press, Koriyama (1991). Google Scholar

  • [72] K. Nishimoto, An Essence of Nishimoto’s Fractional Calculus (Calculus of the 21st Century), Integrals and Differentiations of Arbitrary Order. Descartes Press, Koriyama (1991). Google Scholar

  • [73] K. Nishimoto, Fractional Calculus, Vol. 5. Descartes Press, Koriyama (1996). Google Scholar

  • [74] I. Nourdin, Selected Aspects of Fractional Brownian Motion, Bocconi & Springer Series. Springer, Milano (2012). http://dx.doi.org/10.1007/978-88-470-2823-4CrossrefGoogle Scholar

  • [75] K. B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974). Google Scholar

  • [76] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering. Springer, Dordrecht, Heidelberg (2011). http://dx.doi.org/10.1007/978-94-007-0747-4CrossrefGoogle Scholar

  • [77] A. Oustaloup, Syst`emes asservis linéaires d’ordre fractionnaire: Théorie et pratique, Serie Automatique. Masson, Paris (1983). Google Scholar

  • [78] A. Oustaloup, La Commande CRONE: Commande Robuste d’Ordre Non Entier. Hermès, Paris (1991). Google Scholar

  • [79] A. Oustaloup, La Dérivation Non Entière. Théorie, Synthèse et Applications. Hermès Science, Paris (1995). Google Scholar

  • [80] A. Oustaloup, B. Mathieu, La commande CRONE: du scalaire au multivariable. Hermès Science, Paris (1999). Google Scholar

  • [81] B. B. Paz, A.A. Kilbas, J.J. Trujillo, Cálculo Fraccionario y Ecuaciones Diferenciales Fraccionarias. Universidad Nacional de Educación a Distancia, UNED, Ediciones, Madrid (2003). Google Scholar

  • [82] I. Petras, I. Podlubny, P. O’Leary, L. Dorcak, B. Vinagre, Analogue Realization of Fractional Order Controllers. FBERG, Technical University of Kosice, Kosice (2002). Google Scholar

  • [83] I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation,, Series Nonlinear Physical Science, Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-18101-6CrossrefGoogle Scholar

  • [84] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, Mathematics in Science and Engineering, Vol. 198. Academic Press, San Diego (1999). Google Scholar

  • [85] A. P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions. Nauka, Moscow (1986), In Russian. Google Scholar

  • [86] A. V. Pskhu, Partial Differential Equations of Fractional Order. Nauka, Moscow (2005), In Russian. Google Scholar

  • [87] Y. N. Rabotnov, Elements of Hereditary Solids Mechanics. Nauka, Moscow (1977), In Russian. Google Scholar

  • [88] B. L. S. P. Rao, Statistical Inference for Fractional Diffusion Processes, Wiley Series in Probability and Statistics. Wiley, Chichester (2010). http://dx.doi.org/10.1002/9780470667125CrossrefGoogle Scholar

  • [89] S. V. Rogosin, A. A. Koroleva (Eds.), Advances in Applied Analysis (Trends in Mathematics). Birkhäuser, Basel (2012). Google Scholar

  • [90] B. Ross (Ed.), Fractional Calculus and Its Applications, Proc. of the International Conference, New Haven. Springer-Verlag, New York (1974). Google Scholar

  • [91] B. Rubin, Fractional Integrals and Potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 82. Longman Sci. Techn. / CRC, Harlow (1996). Google Scholar

  • [92] P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods & Special Functions, Sofia’1994 (Proc. 1st Intern. Workshop, with Special Session on FC). Science Culture Technology Publishing (SCTP), Singapore (1995). Google Scholar

  • [93] P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods & Special Functions, Varna’96 (Proc. 2nd International Workshop, with Special Session on FC and “Open Problems in FC” Round Table). Institute of Mathematics and Informatics (IMI — BAS), Sofia (1998). Google Scholar

  • [94] J. Sabatier, O. P. Agrawal, J. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007). Google Scholar

  • [95] S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Nauka i Tekhnika, Minsk (1987). Google Scholar

  • [96] S. G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993). Google Scholar

  • [97] H. Sheng, Y.Q. Chen, T. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Signals and Communication Technology. Springer, London (2012). http://dx.doi.org/10.1007/978-1-4471-2233-3CrossrefGoogle Scholar

  • [98] Z. K. Silagadze, Citations and the Zipf-Mandelbrot’s law. Complex Systems 11 (1997), 487–499. Google Scholar

  • [99] I. N. Sneddon, The Use of Operators of Fractional Integration in Applied Mathematics, Appl. Math. Series. PWN-Polish Scientific Publishers, Warszawa-Poznan (1979). Google Scholar

  • [100] S. G. H. M. Srivastava, K.C. Gupta, The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi and Madras (1982). Google Scholar

  • [101] H. M. Srivastava, O. Shigeyoshi (Eds.), Univalent Functions, Fractional Calculus and Their Applications. Ellis Horwood Ltd, Chichester (1990). Google Scholar

  • [102] H. M. Srivastava, R. G. Buschman, Theory and Applications of Convolution Integral Equations. Kluwer Series on Mathematics and Its Applications, Vol. 79. Kluwer Academic Publishers, Dordrecht, Boston, and London (1992). http://dx.doi.org/10.1007/978-94-015-8092-2CrossrefGoogle Scholar

  • [103] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science. Springer, Beijing, Heidelberg (2011). Google Scholar

  • [104] K. Tas, J. Tenreiro Machado, D. Baleanu (Eds.), Mathematical Methods in Engineering. Springer, Dordrecht (2007). Google Scholar

  • [105] V. V. Uchaikin, V.M. Zolotarev, Chance and Stability. Stable Distributions and their Applications, Series Modern Probability and Statistics, No 3. VSP, Utrecht (1999). http://dx.doi.org/10.1515/9783110935974CrossrefGoogle Scholar

  • [106] V. V. Uchaikin, Method of Fractional Derivatives. Artishok-Press, Ulyanovsk (2008), In Russian. Google Scholar

  • [107] D. Valério, J.S. da Costa, An Introduction to Fractional Control. IET, Stevenage (2012). Google Scholar

  • [108] V. V. Vasilyev, L.A. Simak, Fractional Calculus and Approximation Methods in Modelling of Dynamic Systems. NAS (Nat. Acad. Sci.) of Ukraine, Academic Press, Kiev (2008). Google Scholar

  • [109] B. J. West, Physiology, Promiscuity, and Prophecy at the Millennium: A Tale of Tails (Studies of Nonlinear Phenomena in Life Science), Studies of Nonlinear Phenomena in Life Sciences, Vol. 8. World Scientific Publishing Company, Singapore (1999). http://dx.doi.org/10.1142/4069Google Scholar

  • [110] B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer, New York (2003). http://dx.doi.org/10.1007/978-0-387-21746-8CrossrefGoogle Scholar

  • [111] S. Westerlund, Dead Matter has Memory!. Causal Consulting, Kalmar, Sweden (2002). Google Scholar

  • [112] D. Xue, Y.Q. Chen, D.P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB. Society for Industrial Mathematics, Philadelphia (2008). Google Scholar

  • [113] D. Xue, Y.Q. Chen, Solving Applied Mathematical Problems with MATLAB. Chapman & Hall/CRC Press, Boca Raton (2008). Google Scholar

  • [114] S. B. Yakubovich, Y.F. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Ser. Mathematics and Its Applications, Vol. 287. Kluwer Academic Publishers, Dordrecht, Boston, London (1994). http://dx.doi.org/10.1007/978-94-011-1196-6CrossrefGoogle Scholar

  • [115] X. J. Yang, Local Fractional Functional Analysis and Its Applications. Asian Academic Publisher Limited, Hong Kong (2011). Google Scholar

  • [116] X. J. Yang, Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012). Google Scholar

  • [117] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2008). Google Scholar

  • [118] M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-25358-4CrossrefGoogle Scholar

About the article

Published Online: 2013-03-19

Published in Print: 2013-06-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 16, Issue 2, Pages 479–500, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-013-0030-y.

Export Citation

© 2013 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vasily E. Tarasov
Mathematics, 2019, Volume 7, Number 6, Page 509
[2]
Manuel Ortigueira and José Machado
Fractal and Fractional, 2017, Volume 1, Number 1, Page 2
[3]
Vasily E. Tarasov
Nonlinear Dynamics, 2016, Volume 86, Number 3, Page 1745
[4]
J. F. Gómez Aguilar, T. Córdova-Fraga, J. Tórres-Jiménez, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, and G. V. Guerrero-Ramírez
Mathematical Problems in Engineering, 2016, Volume 2016, Page 1
[5]
J.F. Gómez-Aguilar, M.G. López-López, V.M. Alvarado-Martínez, J. Reyes-Reyes, and M. Adam-Medina
Physica A: Statistical Mechanics and its Applications, 2016, Volume 447, Page 467
[6]
Feng Chen, Qinwu Xu, and Jan S. Hesthaven
Journal of Computational Physics, 2015, Volume 293, Page 157
[7]
Zhi-Yong Chen, Carlo Cattani, and Wei-Ping Zhong
Advances in Mathematical Physics, 2014, Volume 2014, Page 1
[8]
Ahmed Alsaedi, Bashir Ahmad, Nadia Mohamad, and Sotiris K Ntouyas
Advances in Difference Equations, 2014, Volume 2014, Number 1, Page 136
[9]
Yang Zhao, De-Fu Cheng, and Xiao-Jun Yang
Advances in Mathematical Physics, 2013, Volume 2013, Page 1
[10]
K. Balachandran, V. Govindaraj, M. Rivero, J. A. Tenreiro Machado, and J. J. Trujillo
Abstract and Applied Analysis, 2013, Volume 2013, Page 1
[11]
J. A. Tenreiro Machado, Alexandra M. S. F. Galhano, and Juan J. Trujillo
Scientometrics, 2014, Volume 98, Number 1, Page 577

Comments (0)

Please log in or register to comment.
Log in