Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

The journal celebrates now its 20 years!

IMPACT FACTOR 2016: 2.034
5-year IMPACT FACTOR: 2.359

CiteScore 2016: 2.18

SCImago Journal Rank (SJR) 2016: 1.372
Source Normalized Impact per Paper (SNIP) 2016: 1.492

Mathematical Citation Quotient (MCQ) 2016: 0.61

See all formats and pricing
More options …

A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method

Chunye Gong
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
  • Science and Technology on Space Physics Libratory, Beijing, 10076, China
  • School of Computer Science, National University of Defense Technology, Changsha, 410073, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weimin Bao
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
  • Science and Technology on Space Physics Libratory, Beijing, 10076, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guojian Tang
Published Online: 2013-06-26 | DOI: https://doi.org/10.2478/s13540-013-0041-8


The fractional reaction-diffusion equations play an important role in dynamical systems. Indeed, it is time consuming to numerically solve differential fractional diffusion equations. In this paper, we present a parallel algorithm for the Riesz space fractional diffusion equation. The parallel algorithm, which is implemented with MPI parallel programming model, consists of three procedures: preprocessing, parallel solver and postprocessing. The parallel solver involves the parallel matrix vector multiplication and vector vector addition. As to the authors’ knowledge, this is the first parallel algorithm for the Riesz space fractional reaction-diffusion equation. The experimental results show that the parallel algorithm is as accurate as the serial algorithm. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.3-3.4 times faster than the serial algorithm on single CPU core. The parallel efficiency of 64 processes is up to 79.39% compared with 8 processes on a distributed memory cluster system.

MSC: Primary 26A33; Secondary 33E12, 34A08, 34K37, 35R11, 60G22

Keywords: Riesz fractional differential equation; parallel algorithm; Reaction-Dispersion Equation; MPI; explicit finite difference method

  • [1] G. K. Ananth Grama, Anshul Gupta, V. Kumar, Introduction to Parallel Computing. 2nd Ed., Addison-Wesley (2003). Google Scholar

  • [2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al., A view of the parallel computing landscape. Communications of the ACM 52 (2009), 56–67. http://dx.doi.org/10.1145/1562764.1562783CrossrefWeb of ScienceGoogle Scholar

  • [3] K. Burrage, N. Hale, D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. on Scientific Computing 34 (2012), 2145–2172. http://dx.doi.org/10.1137/110847007CrossrefWeb of ScienceGoogle Scholar

  • [4] B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine training and classification on graphics processors. In: Proc. 25th Internat. Conf. on Machine Learning ACM (2008), 104–111. Google Scholar

  • [5] J. Chen, F. Liu, Analysis of stability and convergence of numerical approximation for the Riesz fractional reaction-dispersion equation (in Chinese). J. of Xiamen University (Natural Science) 45 (2006), 466–469. Google Scholar

  • [6] J. Chen, F. Liu, Stability and convergence of an implicit difference approximation for the space Riesz fractional reaction-dispersion equation. Numerical Mathematics, A Journal of Chinese Universities (EN Ser.) 16 (2007), 253. Google Scholar

  • [7] J. Chen, F. Liu, I. Turner, V. Anh, The fundamental and numerical solutions of the Riesz space fractional reaction-dispersion equation. ANZIAM J. 50 (2008), 45–57. http://dx.doi.org/10.1017/S1446181108000333CrossrefWeb of ScienceGoogle Scholar

  • [8] G. Colomer, R. Borrell, F. Trias, I. Rodrguez, Parallel algorithms for sn transport sweeps. J. of Computational Physics 232 (2012), 118–135. http://dx.doi.org/10.1016/j.jcp.2012.07.009Web of ScienceCrossrefGoogle Scholar

  • [9] C. Dhaigude, V. Nikam, Solution of fractional partial differential equations using iterative method. Fract. Calc. Appl. Anal. 15, No 4 (2012), 684–699; DOI: 10.2478/s13540-012-0046-8; at http://link.springer.com/journal/13540. CrossrefGoogle Scholar

  • [10] K. Diethelm, An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 475–490; DOI: 10.2478/s13540-011-0029-1; at http://link.springer.com/journal/13540. CrossrefGoogle Scholar

  • [11] N. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 454–474; DOI: 10.2478/s13540-011-0028-2; at http://link.springer.com/journal/13540. CrossrefGoogle Scholar

  • [12] G. hua Gao, Z. zhong Sun, Y. nan Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. of Computational Physics 231 (2012), 2865–2879. http://dx.doi.org/10.1016/j.jcp.2011.12.028CrossrefWeb of ScienceGoogle Scholar

  • [13] C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, Z. Gong, GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method. J. of Computational Physics 230 (2011), 6010–6022. http://dx.doi.org/10.1016/j.jcp.2011.04.010Web of ScienceGoogle Scholar

  • [14] C. Gong, J. Liu, H. Huang, Z. Gong, Particle transport with unstructured grid on GPU. Computer Physics Communications 183 (2012), 588–593. http://dx.doi.org/10.1016/j.cpc.2011.12.002CrossrefWeb of ScienceGoogle Scholar

  • [15] R. Gorenflo, F. Mainardi, Approximation of lévy-feller diffusion by random walk. J. for Analysis and its Applications 18 (1999), 231–246. Google Scholar

  • [16] H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. In: Proc. FDA’12 — 5th Symposium on Fractional Differentiation and Its Applications, Hohai University, 2012. Google Scholar

  • [17] J. T. Katsikadelis, The BEM for numerical solution of partial fractional differential equations. Comput. Math. Appl. 62 (2011), 891–901. http://dx.doi.org/10.1016/j.camwa.2011.04.001CrossrefGoogle Scholar

  • [18] D. J. Kerbyson, M. Lang, S. Pakin, Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies. Parallel Computing 37 (2011), 550–561. http://dx.doi.org/10.1016/j.parco.2011.02.008CrossrefWeb of ScienceGoogle Scholar

  • [19] M. Köpf, C. Corinth, O. Haferkamp, T. Nonnenmacher, Anomalous diffusion of water in biological tissues. Biophysical Journal 70 (1996), 2950–2958. http://dx.doi.org/10.1016/S0006-3495(96)79865-XCrossrefGoogle Scholar

  • [20] C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI: 10.2478/s13540-012-0028-x; at http://link.springer.com/journal/13540. CrossrefGoogle Scholar

  • [21] J. Lima, R. C. de Souza, The fractional Fourier transform over finite fields. Signal Processing 92 (2012), 465–476. http://dx.doi.org/10.1016/j.sigpro.2011.08.010CrossrefGoogle Scholar

  • [22] S. Lu, F. Molz, G. Fix, Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media. Water Resour. Res. 38 (2002), 1165. Google Scholar

  • [23] M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. of Computational and Applied Mathematics 172 (2004), 65–77. http://dx.doi.org/10.1016/j.cam.2004.01.033CrossrefGoogle Scholar

  • [24] M. Meerschaert, C. Tadjeran, Finite difference approximations for twosided space-fractional partial differential equations. Applied Numerical Mathematics 56 (2006), 80–90. http://dx.doi.org/10.1016/j.apnum.2005.02.008Web of ScienceCrossrefGoogle Scholar

  • [25] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993). Google Scholar

  • [26] Y. nan Zhang, Z. zhong Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. of Computational Physics 230 (2011), 8713–8728. http://dx.doi.org/10.1016/j.jcp.2011.08.020CrossrefWeb of ScienceGoogle Scholar

  • [27] N. Ozdemir, D. Avci, B. Iskender, The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equation. Intern. J. of Optimization and Control: Theories & Applications (IJOCTA) 1, (2011), 17–26. http://dx.doi.org/10.11121/ijocta.01.2011.0028Google Scholar

  • [28] H.-K. Pang, H.-W. Sun, Multigrid method for fractional diffusion equations. J. of Computational Physics 231 (2012), 693–703. http://dx.doi.org/10.1016/j.jcp.2011.10.005CrossrefGoogle Scholar

  • [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA (1999). Google Scholar

  • [30] S. Samko, A. Kilbas, O. Maričev, Fractional Integrals and Derivatives, Gordon and Breach Science Publ., Yverdon (1993). Google Scholar

  • [31] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, S. Huss-Lederman, MPI: The Complete Reference, MIT Press, Cambridge, MA — USA (1995). Google Scholar

  • [32] C. Tadjeran, M. M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. of Computational Physics 213 (2006), 205–213. http://dx.doi.org/10.1016/j.jcp.2005.08.008CrossrefGoogle Scholar

  • [33] Y. Xu, Z. He, The short memory principle for solving abel differential equation of fractional order. Computers & Mathematics with Applications 62 (2011), 4796–4805. http://dx.doi.org/10.1016/j.camwa.2011.10.071CrossrefWeb of ScienceGoogle Scholar

  • [34] S. B. Yuste, J. Quintana-Murillo, A finite difference method with nonuniform timesteps for fractional diffusion equations. Computer Physics Communications 183 (2012), 2594–2600. http://dx.doi.org/10.1016/j.cpc.2012.07.011CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-06-26

Published in Print: 2013-09-01

Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-013-0041-8.

Export Citation

© 2013 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Y. Chen and Chang-Ming Chen
Mathematics and Computers in Simulation, 2017, Volume 140, Page 125
Hong Fang, Chunye Gong, Caihui Yu, Changwan Min, Xing Zhang, Jie Liu, and Liquan Xiao
Computers & Mathematics with Applications, 2017, Volume 73, Number 1, Page 71
Daliang Su, Weimin Bao, Jie Liu, and Chunye Gong
Journal of the Franklin Institute, 2016
Qinglin Wang, Jie Liu, Chunye Gong, Xiantuo Tang, Guitao Fu, and Zuocheng Xing
Advances in Difference Equations, 2016, Volume 2016, Number 1
Chunye Gong, Weimin Bao, Jie Liu, Guojian Tang, and Yuewen Jiang
Computers & Fluids, 2016, Volume 134-135, Page 23
Wenping Fan, Xiaoyun Jiang, and Shanzhen Chen
Computers & Mathematics with Applications, 2016, Volume 71, Number 2, Page 642
Chunye Gong, Weimin Bao, Guojian Tang, Yuewen Jiang, and Jie Liu
Mathematical Problems in Engineering, 2015, Volume 2015, Page 1
Jie Liu, Chunye Gong, Weimin Bao, Guojian Tang, and Yuewen Jiang
Discrete Dynamics in Nature and Society, 2014, Volume 2014, Page 1
Chunye Gong, Weimin Bao, Guojian Tang, Changwan Min, and Jie Liu
Mathematical Problems in Engineering, 2014, Volume 2014, Page 1
Chunye Gong, Weimin Bao, Guojian Tang, Bo Yang, and Jie Liu
The Journal of Supercomputing, 2014, Volume 68, Number 3, Page 1521
Chunye Gong, Weimin Bao, Guojian Tang, Yuewen Jiang, and Jie Liu
The Scientific World Journal, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in