Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 16, Issue 3

Issues

Fractional integration toolbox

Toma Marinov / Nelson Ramirez / Fidel Santamaria
Published Online: 2013-06-26 | DOI: https://doi.org/10.2478/s13540-013-0042-7

Abstract

The problems formulated in the fractional calculus framework often require numerical fractional integration/differentiation of large data sets. Several existing fractional control toolboxes are capable of performing fractional calculus operations, however, none of them can efficiently perform numerical integration on multiple large data sequences. We developed a Fractional Integration Toolbox (FIT), which efficiently performs fractional numerical integration/differentiation of the Riemann-Liouville type on large data sequences. The toolbox allows parallelization and is designed to be deployed on both CPU and GPU platforms.

MSC: Primary 26A33; Secondary 33F05, 60G22, 65D05, 65D25

Keywords: fractional calculus; Riemann-Liouville fractional integral; Riemann-Liouville fractional derivative; numerical quadrature; fractional reaction-diffusion equation

  • [1] T.J. Anastasio, The fractional-order dynamics of brainstem vestibulooculomotor neurons. Biol. Cybern. 72 (1994), 69–79. http://dx.doi.org/10.1007/BF00206239CrossrefGoogle Scholar

  • [2] K. Assaleh, W.M. Ahmad, Modeling of speech signals using fractional calculus. In: 9th International Symposium on Signal Processing and Its Applications, ISSPA 2007, 12–15 Feb. (2007), 1–4. http://dx.doi.org/10.1109/ISSPA.2007.4555563CrossrefGoogle Scholar

  • [3] C. deBoor, Practical Guide to Splines. Springer, New York (2001). Google Scholar

  • [4] S.D. Conte, C. deBoor, Elementary Numerical Analysis. McGraw-Hill, New York (2002). Google Scholar

  • [5] K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194 (2005), 743–773. http://dx.doi.org/10.1016/j.cma.2004.06.006CrossrefGoogle Scholar

  • [6] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010). http://dx.doi.org/10.1007/978-3-642-14574-2CrossrefGoogle Scholar

  • [7] A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multicompartmental systems. J. Pharmacokinet. Pharmacodyn. 37, No 5 (2010), 507–524. http://dx.doi.org/10.1007/s10928-010-9170-4CrossrefGoogle Scholar

  • [8] J.F. Douglas, Some applications of fractional calculus to polymer science. Advances in Chemical Physics 102 (2007), 121–191. http://dx.doi.org/10.1002/9780470141618.ch3CrossrefGoogle Scholar

  • [9] N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numerical Algorithms 26 (2001), 333–346. http://dx.doi.org/10.1023/A:1016601312158CrossrefGoogle Scholar

  • [10] F.N. Fritsch, R.E. Carlson, Monotone piecewise cubic interpolation. SIAM J. Numer. Anal 17, No 2 (1980). CrossrefGoogle Scholar

  • [11] P. Melchior, B. Orsoni, O. Lavialle and A. Oustaloup, The CRONE toolbox for Matlab: Fractional Path Planning Design in Robotics; http://www.ims-bordeaux.fr/CRONE/toolbox. Google Scholar

  • [12] M. Monsrefi-Torbati, J.K. Hammond, Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 335B, No 6 (1998), 1077–1086. http://dx.doi.org/10.1016/S0016-0032(97)00048-3CrossrefGoogle Scholar

  • [13] R.R. Nigmatullin, Fractional integral and its physical interpretation. Teoret. Mat. Fiz. 90, No 3 (1992), 354–368. Google Scholar

  • [14] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, Mineola, New York (2006). Google Scholar

  • [15] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386. Google Scholar

  • [16] F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52 (2006), 635–648. http://dx.doi.org/10.1016/j.neuron.2006.10.025CrossrefGoogle Scholar

  • [17] F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 34, No 4 (2011), 561–568. http://dx.doi.org/10.1111/j.1460-9568.2011.07785.xWeb of ScienceCrossrefGoogle Scholar

  • [18] N. Sebaa, Z.E.A. Fellah, W. Lauriks, C. Depollier, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Processing Archive 86, No 10 (2006), 2668–2677. http://dx.doi.org/10.1016/j.sigpro.2006.02.015CrossrefGoogle Scholar

  • [19] E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity. Molecular and Quantum Acoustics 23 (2002), 397–404. Google Scholar

  • [20] I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today 55, No 11 (2002), 48–54. http://dx.doi.org/10.1063/1.1535007CrossrefGoogle Scholar

  • [21] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis. Springer, New York (1980). Google Scholar

  • [22] A. Tepljakov, E. Petlenkov, J. Belikov, FOMCON: Fractional-Order Modeling and Control, Toolbox for MATLAB. In: 18th International Conf. “Mixed Design of Integrated Circuits and Systems”, June 16–18 (2011), Gliwice, Poland. Google Scholar

  • [23] D. Valerio, J.S. da Costa, Ninteger: a non-integer control toolbox for Matlab; http://web.ist.utl.pt/duarte.valerio/FDA04T.pdf. Google Scholar

About the article

Published Online: 2013-06-26

Published in Print: 2013-09-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 16, Issue 3, Pages 670–681, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.2478/s13540-013-0042-7.

Export Citation

© 2013 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Toma Marinov and Fidel Santamaria
BMC Neuroscience, 2013, Volume 14, Number S1
[2]
[3]
Erick J. López-Sánchez, Juan M. Romero, and Huitzilin Yépez-Martínez
Physical Review E, 2017, Volume 96, Number 3
[4]
Wondimu Teka, David Stockton, Fidel Santamaria, and Kim T. Blackwell
PLOS Computational Biology, 2016, Volume 12, Number 3, Page e1004776
[5]
Wondimu Teka, Toma M. Marinov, Fidel Santamaria, and Boris S. Gutkin
PLoS Computational Biology, 2014, Volume 10, Number 3, Page e1003526
[6]
Zhuo Li, Lu Liu, Sina Dehghan, YangQuan Chen, and Dingyü Xue
International Journal of Control, 2017, Volume 90, Number 6, Page 1165

Comments (0)

Please log in or register to comment.
Log in