Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 17, Issue 1

Issues

Robust stability bounds of uncertain fractional-order systems

YingDong Ma
  • Department of Automation, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China, No. 800 Dong Chuan Rd., Min Hang, Shanghai, 200240, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun-Guo Lu
  • Department of Automation, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China, No. 800 Dong Chuan Rd., Min Hang, Shanghai, 200240, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ WeiDong Chen
  • Department of Automation, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China, No. 800 Dong Chuan Rd., Min Hang, Shanghai, 200240, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ YangQuan Chen
  • Mechatronics, Embedded Systems and Automation (MESA) Lab, School of Engineering, University of California, Merced 5200 North Lake Road, Merced, CA, 95343, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-28 | DOI: https://doi.org/10.2478/s13540-014-0159-3

Abstract

This paper considers the robust stability bound problem of uncertain fractional-order systems. The system considered is subject either to a two-norm bounded uncertainty or to a infinity-norm bounded uncertainty. The robust stability bounds on the uncertainties are derived. The fact that these bounds are not exceeded guarantees that the asymptotical stability of the uncertain fractional-order systems is preserved when the nominal fractional-order systems are already asymptotically stable. Simulation examples are given to demonstrate the effectiveness of the proposed theoretical results.

MSC: Primary 26A33; Secondary 34A08, 34D10, 93C73, 93D09, 93D21

Keywords: fractional-order system; linear matrix inequality; robust stability bound; uncertainty

  • [1] H.S. Ahn and Y. Q. Chen, Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44, No 11 (2008), 2985–2988. http://dx.doi.org/10.1016/j.automatica.2008.07.003CrossrefWeb of ScienceGoogle Scholar

  • [2] H.S. Ahn, Y.Q. Chen, and I. Podlubny, Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Appl. Math. Comput. 187, No 1 (2007), 27–34. http://dx.doi.org/10.1016/j.amc.2006.08.099CrossrefWeb of ScienceGoogle Scholar

  • [3] D. Baleanu, A.K. Golmankhaneh, A.K. Golmankhaneh, and R.R. Nigmatullin, Newtonian law with memory. Nonlinear Dynamics 60, No 1–2 (2010), 81–86. http://dx.doi.org/10.1007/s11071-009-9581-1CrossrefWeb of ScienceGoogle Scholar

  • [4] D. Cafagna, Fractional calculus: A mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine 1, No 2 (2007), 35–40. http://dx.doi.org/10.1109/MIE.2007.901479CrossrefGoogle Scholar

  • [5] Y.Q. Chen, H.S. Ahn, and I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing 86, No 10 (2006), 2611–2618. http://dx.doi.org/10.1016/j.sigpro.2006.02.011CrossrefGoogle Scholar

  • [6] H. Delavari, D. Baleanu, and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dynamics 67, No 4 (2012), 2433–2439. http://dx.doi.org/10.1007/s11071-011-0157-5CrossrefGoogle Scholar

  • [7] K. Diethelm, N.J. Ford, and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29, No 1–4 (2002), 3–22. http://dx.doi.org/10.1023/A:1016592219341CrossrefGoogle Scholar

  • [8] C. Farges, M. Moze, and J. Sabatier, Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica 46, No 10 (2010), 1730–1734. http://dx.doi.org/10.1016/j.automatica.2010.06.038Web of ScienceCrossrefGoogle Scholar

  • [9] C. Farges, J. Sabatier, and M. Moze, Fractional order polytopic systems: Robust stability and stabilization. Advances in Difference Equations 2011, No 1 (2011), 1–10. http://dx.doi.org/10.1186/1687-1847-2011-35CrossrefGoogle Scholar

  • [10] S.E. Hamamci, An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 52, No 10 (2007), 1964–1969. http://dx.doi.org/10.1109/TAC.2007.906243Web of ScienceCrossrefGoogle Scholar

  • [11] Z. Jiao and Y.Q. Chen, Impulse response of a generalized fractional second order filter. Fract. Calc. Appl. Anal. 15, No 1 (2012), 97–116; DOI: 10.2478/s13540-012-0007-2; at http://link.springer.com/article/10.2478/s13540-012-0007-2. CrossrefGoogle Scholar

  • [12] Z. Jiao and Y.Q. Chen, Stability analysis of fractional-order systems with double noncommensurate orders for matrix case. Fract. Calc. Appl. Anal. 14, No 3 (2011), 436–453; DOI: 10.2478/s13540-011-0027-3; at http://link.springer.com/article/10.2478/s13540-011-0027-3. CrossrefGoogle Scholar

  • [13] P.P. Khargonekar, I.R. Petersen, and K.M. Zhou, Robust stabilization of uncertain linear systems: Quadratic stabilizability and H ∞ control theory. IEEE Trans. Autom. Control 35, No 3 (1990), 356–361. http://dx.doi.org/10.1109/9.50357CrossrefGoogle Scholar

  • [14] Y.H. Lan, and Y. Zhou, LMI-based robust control of fractional-order uncertain linear systems. Computers and Mathematics with Appl. 62, No 3 (2011), 1460–1471. http://dx.doi.org/10.1016/j.camwa.2011.03.028CrossrefGoogle Scholar

  • [15] C. Li, and J.C. Wang, Robust stability and stabilization of fractional order interval systems with coupling relationships: The 0 < α < 1 case. J. of the Franklin Institute 349, No 7 (2012), 2406–2419. http://dx.doi.org/10.1016/j.jfranklin.2012.05.006Google Scholar

  • [16] J.G. Lu, and G.R. Chen, Robust stability and stabilization of fractional-order interval systems: An LMI approach. IEEE Trans. Autom. Control 54, No 6 (2009), 1294–1299. http://dx.doi.org/10.1109/TAC.2009.2013056CrossrefGoogle Scholar

  • [17] J.G. Lu, and Y.Q. Chen, Robust stability and stabilization of fractionalorder interval systems with the fractional order α: The 0 < α < 1 case. IEEE Trans. Autom. Control 55, No 1 (2010), 152–158. http://dx.doi.org/10.1109/TAC.2009.2033738Web of ScienceGoogle Scholar

  • [18] J.A.T. Machado (Guest Editor), Special issue on fractional calculus and applications. Nonlinear Dynamics 29, No 1-4 (2002), 1–385. http://dx.doi.org/10.1023/A:1016508704745CrossrefGoogle Scholar

  • [19] R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Computers and Mathematics with Appl. 59, No 5 (2010), 1586–1593. Web of ScienceGoogle Scholar

  • [20] R.L. Magin, W.G. Li, M.P. Velasco, J. Trujillo, D.A. Reiter, A. Morgenstern, and R.G. Spencer, Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models. J. of Magnetic Resonance 210, No 2 (2011), 184–191. http://dx.doi.org/10.1016/j.jmr.2011.03.006CrossrefGoogle Scholar

  • [21] R.L. Magin, M.D. Ortigueira, I. Podlubny, and J. Trujillo, On the fractional signals and systems. Signal Processing 91, No 3 (2011), 350–371. http://dx.doi.org/10.1016/j.sigpro.2010.08.003CrossrefGoogle Scholar

  • [22] D. Matignon, Stability results for fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC Lille, France (1996), 963–968. Google Scholar

  • [23] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D.Y. Xue, and V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications. Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-1-84996-335-0CrossrefGoogle Scholar

  • [24] R.R. Nigmatullin, A.A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, and H. Catalgil-Giz, The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions. Physica B: Condensed Matter 388, No 1–2 (2007), 418–434. http://dx.doi.org/10.1016/j.physb.2006.06.153CrossrefWeb of ScienceGoogle Scholar

  • [25] R.R. Nigmatullin and S.O. Nelson, Recognition of the fractional kinetics in complex systems: Dielectric properties of fresh fruits and vegetables from 0.01 to 1.8 GHz. Signal Processing 86, No 10 (2006), 2744–2759. http://dx.doi.org/10.1016/j.sigpro.2006.02.018CrossrefGoogle Scholar

  • [26] M.D. Ortigueira, An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits and Systems Magazine 8, No 3 (2008), 19–26. http://dx.doi.org/10.1109/MCAS.2008.928419CrossrefGoogle Scholar

  • [27] A. Oustaloup, B. Mathieu, and P. Lanusse, The CRONE control of resonant plants: Application to a flexible transmission. European J. of Control 1, No 2 (1995), 113–121. http://dx.doi.org/10.1016/S0947-3580(95)70014-0CrossrefGoogle Scholar

  • [28] I. Petras, Y.Q. Chen, B.M. Vinagre, and I. Podlubny, Stability of linear time invariant systems with interval fractional orders and interval coefficients. In: Second IEEE Int. Conference on Computation Cybernetics Viena Austria (2005), 341–346. Google Scholar

  • [29] I. Petras and R.L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun. Nonlinear Sci. Numer. Simulation 16, No 12 (2011), 4588–4595. http://dx.doi.org/10.1016/j.cnsns.2011.02.012CrossrefWeb of ScienceGoogle Scholar

  • [30] I. Podlubny, Fractional Differential Equations. Academic Press, London (1999). Google Scholar

  • [31] J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, 2007. http://dx.doi.org/10.1007/978-1-4020-6042-7CrossrefGoogle Scholar

  • [32] J. Sabatier, C. Farges, M. Merveillaut, and L. Feneteau, On observability and pseudo state estimation of fractional order systems. European Journal of Control 18, No 3 (2012), 260–271. http://dx.doi.org/10.3166/ejc.18.260-271Web of ScienceCrossrefGoogle Scholar

  • [33] J. Sabatier, C. Farges, and J.C. Trigeassou, Fractional systems state space description: some wrong ideas and proposed solutions. J. on Vibration and Control, To appear, DOI: 10.1177/1077546313481839. CrossrefGoogle Scholar

  • [34] J. Sabatier, M. Merveillaut, R. Malti, and A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simulation 15, No 5 (2010), 1318–1326. http://dx.doi.org/10.1016/j.cnsns.2009.05.070CrossrefWeb of ScienceGoogle Scholar

  • [35] J. Sabatier, M. Moze, and C. Farges, LMI stability conditions for fractional order systems. Computers and Mathematics with Appl. 59, No 5 (2010), 1594–1609. http://dx.doi.org/10.1016/j.camwa.2009.08.003CrossrefGoogle Scholar

  • [36] N. Tan, Ö. F. Özgüven, and M.M. Özyetkin, Ro, Robust stability analysis of fractional order interval polynomials. ISA Transactions 48, No 2 (2009), 166–172. http://dx.doi.org/10.1016/j.isatra.2009.01.002Web of ScienceCrossrefGoogle Scholar

  • [37] M.S. Tavazoei and M. Haeri, Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach. Automatica 46, No 1 (2010), 94–100. http://dx.doi.org/10.1016/j.automatica.2009.09.016CrossrefWeb of ScienceGoogle Scholar

  • [38] M.S. Tavazoei and M. Haeri, A note on the stability of fractional order systems. Mathematics and Computers in Simulation 79, No 5 (2009), 1566–1576. http://dx.doi.org/10.1016/j.matcom.2008.07.003CrossrefGoogle Scholar

  • [39] J.A. Tenreiro Machado, Analysis and design of fractional-order digital control systems. Systems Analysis Modelling Simulation 27, No 2–3 (1997), 107–122. Google Scholar

  • [40] J.C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, State variables and transients of fractional order differential systems. Computers and Mathematics with Applications 64, No 10 (2012), 3117–3140. http://dx.doi.org/10.1016/j.camwa.2012.03.099CrossrefGoogle Scholar

  • [41] J.C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, Transients of fractional order integrator and derivatives. Signal, Image and Video Processing 6, No 3 (2012), 359–372. http://dx.doi.org/10.1007/s11760-012-0332-2CrossrefGoogle Scholar

  • [42] B.M. Vinagre and V. Feliu, Optimal fractional controllers for rational order systems: a special case of the wiener-hopf spectral factorization method. IEEE Trans. Autom. Control 52, No 12 (2007), 2385–2389. http://dx.doi.org/10.1109/TAC.2007.910728CrossrefWeb of ScienceGoogle Scholar

  • [43] D.J. Wang, and X.L. Gao, H∞ design with fractional-order PDµ controllers. Automatica 48, No 5 (2012), 974–977. http://dx.doi.org/10.1016/j.automatica.2012.02.012CrossrefWeb of ScienceGoogle Scholar

  • [44] R.K. Yedavalli and Z. Liang, Reduced conservatism in stability robustness bounds by state transformation. IEEE Trans. Autom. Control 31, No 9 (1986), 863–866. http://dx.doi.org/10.1109/TAC.1986.1104408CrossrefGoogle Scholar

About the article

Published Online: 2013-12-28

Published in Print: 2014-03-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 17, Issue 1, Pages 136–153, ISSN (Online) 1314-2224, DOI: https://doi.org/10.2478/s13540-014-0159-3.

Export Citation

© 2014 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
He Li and Guang-Hong Yang
International Journal of Systems Science, 2019, Volume 50, Number 6, Page 1107
[3]
BARIS BAYKANT ALAGOZ
Balkan Journal of Electrical and Computer Engineering, 2017, Page 86
[6]
Yuanhua Li, Heng Liu, and Hongxing Wang
Mathematical Problems in Engineering, 2015, Volume 2015, Page 1

Comments (0)

Please log in or register to comment.
Log in