[1] J.M. Chambers, C.L. Mallows, B.W. Stuck, A method for simulating stable random variables. J. of the American Statistical Association
71 (1976), 340–344. http://dx.doi.org/10.1080/01621459.1976.10480344CrossrefGoogle Scholar

[2] I. Eliazar, J. Klafter, Anomalous is ubiquitous. Annals of Physics
326 (2011), 2517–2531. http://dx.doi.org/10.1016/j.aop.2011.07.006CrossrefWeb of ScienceGoogle Scholar

[3] R. García-García, A. Rosso, G. Schehr, Lévy flights on the half line. Phys. Rev. E.
86 (2012), # 011101. Google Scholar

[4] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal.
1, No 2 (1998), 167–192. Google Scholar

[5] R. Gorenflo, F. Mainardi, Approximation of Lévy-Feller diffusion by random walk. J. for Analysis and its Applications
18 (1999), 231–246. Google Scholar

[6] M. Hahn, K. Kobayashi, S. Umarov, SDEs driven by a timechanged Lévy process and their associated time-fractional order pseudodifferential equations. J. of Theoretical Probability
25 (2012), 262–279. http://dx.doi.org/10.1007/s10959-010-0289-4CrossrefGoogle Scholar

[7] M. Hahn, S. Umarov, Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Frac. Calc. Appl. Anal.
14, No 1 (2011), 56–79; DOI: 10.2478/s13540-011-0005-9; http://link.springer.com/article/10.2478/s13540-011-0005-9. CrossrefGoogle Scholar

[8] R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company Inc. (2011). http://dx.doi.org/10.1142/8072CrossrefGoogle Scholar

[9] R. Hilfer, Threefold Introduction to Fractional Derivatives. In: Anomalous Transport, Wiley-VCH Verlag GmbH & Co. KGaA (2008), 17–73. http://dx.doi.org/10.1002/9783527622979.ch2CrossrefGoogle Scholar

[10] F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics
76 (2013), # 046602. Google Scholar

[11] M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (I). Fract. Calc. Appl. Anal.
8, No 3 (2005), 323–341; at http://www.math.bas.bg/~fcaa. Google Scholar

[12] M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) — with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal.
9, No 4 (2006), 333–349; at http://www.math.bas.bg/~fcaa. Google Scholar

[13] S. Jespersen, R. Metzler, H.C. Fogedby, Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E
59 (1999), 2736–2745. http://dx.doi.org/10.1103/PhysRevE.59.2736CrossrefGoogle Scholar

[14] G. Jumarie, On the solution of the stochastic differential equation of exponential growth driven by fractional brownian motion. Appl. Math. Lett.
18 (2005), 817–826. http://dx.doi.org/10.1016/j.aml.2004.09.012CrossrefGoogle Scholar

[15] A. Kopp, I. Büsching, R.D. Strauss, M.S. Potgieter, A stochastic differential equation code for multidimensional Fokker-Planck type problems. Computer Physics Communications
183 (2012), 530–542. http://dx.doi.org/10.1016/j.cpc.2011.11.014CrossrefGoogle Scholar

[16] N. Krepysheva, L. di Pietro, M.C. Néel, Space-fractional advectiondiffusion and reflective boundary condition. Phys. Rev. E
73 (2006), # 021104. Google Scholar

[17] M. Magdziarz, A. Weron, Competition between subdiffusion and Lévy flights: A Monte Carlo approach. Phys. Rev. E
75 (2007), # 056702. Web of ScienceGoogle Scholar

[18] F. Mainardi, G. Pagnini, R.K. Saxena, Fox H functions in fractional diffusion. J. of Comput. and Appl. Mathematics
178 (2005), 321–331. http://dx.doi.org/10.1016/j.cam.2004.08.006CrossrefGoogle Scholar

[19] M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. of Comput. and Appl. Mathematics
172 (2004), 65–77. http://dx.doi.org/10.1016/j.cam.2004.01.033CrossrefGoogle Scholar

[20] M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math.
56 (2006), 80–90. http://dx.doi.org/10.1016/j.apnum.2005.02.008CrossrefGoogle Scholar

[21] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.
339 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3CrossrefGoogle Scholar

[22] K. Oldham, J. Spanier, The Fractional Calculus (Theory and Applications of Differentiation and Integration to Arbitrary Order). Academic Press New York (1974). Google Scholar

[23] D. Perrone, R.O. Dendy, I. Furno, R. Sanchez, G. Zimbardo, A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci, F. Valentini, Nonclassical transport and particle-field Coupling: From laboratory plasmas to the solar wind. Space Sci. Rev.
178 (2013), 233–270. http://dx.doi.org/10.1007/s11214-013-9966-9Web of ScienceCrossrefGoogle Scholar

[24] I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering, Elsevier Science & Acad. Press, N. York etc. (1999). Google Scholar

[25] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal.
5, No 4 (2002), 367–386; at http://www.math.bas.bg/~fcaa. Google Scholar

[26] E. Sousa, A second order explicit finite difference method for the fractional advection diffusion equation. Comp. Math. Appl.
64 (2012), 3141–3152. http://dx.doi.org/10.1016/j.camwa.2012.03.002CrossrefGoogle Scholar

[27] C. Tadjeran, M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. of Computational Physics
220 (2007), 813–823. http://dx.doi.org/10.1016/j.jcp.2006.05.030CrossrefGoogle Scholar

[28] V. Volpert, Y. Nec, A. Nepomnyashchy, Fronts in anomalous diffusionreaction systems. Philos. Trans. A Math. Phys. Eng. Sci.
371 (2013), # 20120, 179. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.