Jump to ContentJump to Main Navigation
Show Summary Details

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

IMPACT FACTOR increased in 2015: 2.246
Rank 10 out of 312 in category Mathematics, 9 out of 254 in Applied Mathematics and 15 out of 101 in Mathematics, Interdisciplinary Applications in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404
Impact per Publication (IPP) 2015: 2.218

Mathematical Citation Quotient (MCQ) 2015: 0.61

See all formats and pricing

A new equivalence of Stefan’s problems for the time fractional diffusion equation

Sabrina Roscani
  • Departamento de Matemática — ECEN Facultad de Cs. Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario, Av. Pellegrini 250, 2000, Rosario, Argentina
  • Email:
/ Eduardo Marcus
  • Departamento de Matemática Facultad de Cs. Empresariales, Universidad Austral Rosario, Paraguay 1950, 2000, Rosario, Argentina
  • Email:
Published Online: 2014-03-21 | DOI: https://doi.org/10.2478/s13540-014-0175-3


A fractional Stefan’s problem with a boundary convective condition is solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. Then an equivalence with other two fractional Stefan’s problems (the first one with a constant condition on x = 0 and the second with a flux condition) is proved and the convergence to the classical solutions is analyzed when α ↗ 1 recovering the heat equation with its respective Stefan’s condition.

MSC: Primary 26A33; Secondary 33E12, 35R11, 35R35, 80A22

Keywords: Caputo’s fractional derivative; fractional diffusion equation; Stefan’s problem

  • [1] C. Atkinson, Moving boundary problems for time fractional and composition dependent diffusion. Fract. Calc. Appl. Anal. 15, No 2 (2012), 207–221; DOI: 10.2478/s13540-012-0015-2; http://link.springer.com/article/10.2478/s13540-012-0015-2. [Web of Science] [Crossref]

  • [2] J.R. Cannon, The One-Dimensional Heat Equation. Cambridge University Press, Cambridge (1984). http://dx.doi.org/10.1017/CBO9781139086967 [Crossref]

  • [3] A. Datzeff, Sur le problème linéaire de Stefan. Mémoires de sciences physiques, Fasc. 69, Gauthier-Villars, Paris (1970).

  • [4] F. Falcini, R. Garra,V. R. Voller, Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects. Physical Review E87 (2013), # 042401. [Web of Science]

  • [5] R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383–414.

  • [6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). http://dx.doi.org/10.1142/9781848163300 [Crossref]

  • [7] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. International Journal of Differential Equations 2010 (2010), ID # 04505, 29 pages; doi: 10.1155/2010/104505. [Crossref]

  • [8] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

  • [9] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies Vol. 204, Elsevier Science B.V., Amsterdam, The Netherlands (2006). http://dx.doi.org/10.1016/S0304-0208(06)80001-0 [Crossref]

  • [10] M.S. Kushwaha, Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation. Applied Mathematical Modelling 37 (2013), 3589–3599. http://dx.doi.org/10.1016/j.apm.2012.07.047 [Web of Science] [Crossref]

  • [11] Xicheng Li, Shaowei Wang, Moli Zhao, Two methods to solve a fractional single phase moving boundary problem. Central European Journal of Physics 11, No 10 (2013), 1387–1391. http://dx.doi.org/10.2478/s11534-013-0227-z [Web of Science] [Crossref]

  • [12] J. Liu, M. Xu, Some exact solutions to Stefan problems with fractional differential equations. J. of Mathematical Analysis and Applications 351 (2009), 536–542. http://dx.doi.org/10.1016/j.jmaa.2008.10.042 [Crossref]

  • [13] Y. Luchko, Some uniqueness and existence results for the initialboundary-value problems for the generalized time-fractional diffusion equation. Computer and Mathematics with Applications 59 (2010), 1766–1772. http://dx.doi.org/10.1016/j.camwa.2009.08.015 [Crossref]

  • [14] A.M. Meirmanov, The Stefan Problem. Walter de Gruyter, Berlin (1992). http://dx.doi.org/10.1515/9783110846720 [Crossref]

  • [15] I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego-Calif (1999).

  • [16] S. Roscani, E. Santillan Marcus, Two equivalent Stefan’s problems for the time-fractional diffusion equation. Fract. Calc. Appl. Anal. 16, No 4 (2013), 802–815; DOI: 10.2478/s13540-013-0050-7; http://link.springer.com/article/10.2478/s13540-013-0050-7. [Crossref]

  • [17] L. Rubinstein, The Stefan Problem. AMS Translation of Mathematical Monographs, Vol. 27, Providence, RI (1971).

  • [18] D. Tarzia, A Bibliography on Moving Free Boundary Problems for the Heat-Diffusion Equation. The Stefan and Related Problems. MAT-Serie A 2 (2000) (with 5869 titles on the subject, 300 pages).

  • [19] D. Tarzia, Exact solution for a Stefan problem with convective boundary condition and density jump. Proc. Appl. Math. Mech. 7 (2007), 1040307–1040308; DOI: 10.1002/pamm.200700815. http://dx.doi.org/10.1002/pamm.200700815 [Crossref]

  • [20] C.J. Vogl, M.J. Miksis and S.H. Davis, Moving boundary problems governed by anomalous diffusion. Proc. Royal Soc. A 468 (2012), 3348–3369. http://dx.doi.org/10.1098/rspa.2012.0170 [Crossref]

  • [21] V. R. Voller, An exact solution of a limit case Stefan problem governed by a fractional diffusion equation. Journal of Heat and Mass Transfer 53 (2010), 5622–5625. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.038 [Crossref]

About the article

Published Online: 2014-03-21

Published in Print: 2014-06-01

Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, DOI: https://doi.org/10.2478/s13540-014-0175-3. Export Citation

© 2014 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nataliya Vasylyeva
Fractional Calculus and Applied Analysis, 2015, Volume 18, Number 4

Comments (0)

Please log in or register to comment.
Log in