Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2017: 2.865
5-year IMPACT FACTOR: 3.323

CiteScore 2017: 3.06

SCImago Journal Rank (SJR) 2017: 1.967
Source Normalized Impact per Paper (SNIP) 2017: 1.954

Mathematical Citation Quotient (MCQ) 2017: 0.98

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 17, Issue 2

Issues

Some pioneers of the applications of fractional calculus

Duarte Valério
  • IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Pav. Eng. Mec. III, 1049 - 001, Lisboa, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Machado
  • Polytechnic of Porto, Dept. of Electrical Engineering, ISEP — Institute of Engineering, Rua Dr. António Bernardino de Almeida, 431, 4200 - 072, Porto, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Virginia Kiryakova
  • Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., Block 8, Sofia, 1113, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-21 | DOI: https://doi.org/10.2478/s13540-014-0185-1

Abstract

In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.

MSC: Primary 26A33; Secondary 01A55, 01A60, 34A08

Keywords: fractional calculus; applications; pioneers; Abel; Cole; Gemant; Gerasimov; Heaviside; Lévy; Nigmatullin; Rabotnov; Scott Blair

  • [1] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus. Fractional Calculus and Applied Analysis 13, No 4 (2010), 447–454; http://www.math.bas.bg/~fcaa. Google Scholar

  • [2] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fractional Calculus and Applied Analysis 13, No 3 (2010), 329–334; http://www.math.bas.bg/~fcaa. Google Scholar

  • [3] J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 16, No 3 (2011), 1140–1153; doi:10.1016/j.cnsns.2010.05.027. http://dx.doi.org/10.1016/j.cnsns.2010.05.027CrossrefGoogle Scholar

  • [4] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, Yverdon, 1993. Google Scholar

  • [5] A. Gemant, On fractional differentials. Philosophical Magazine, Ser. 7 25, No 4 (1942), 540–549. Google Scholar

  • [6] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York, 1974. Google Scholar

  • [7] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus. In: Fractional Calculus and Its Applications (Proc. Intern. Conf., New Haven Univ., 1974), Lect. Notes in Math. 457 (1975), 1–36; DOI: 10.1007/BFb0067096; http://link.springer.com/chapter/10.1007/BFb0067096. http://dx.doi.org/10.1007/BFb0067096CrossrefGoogle Scholar

  • [8] M. Mikolás, On the recent trends in the development, theory and applications of fractional calculus. In: Fractional Calculus and Its Applications (Proc. Intern. Conf., New Haven Univ., 1974), Lect. Notes in Math. 457 (1975), 357–375; DOI: 10.1007/BFb0067119; http://link.springer.com/chapter/10.1007/BFb0067119 http://dx.doi.org/10.1007/BFb0067119CrossrefGoogle Scholar

  • [9] B. Ross, The development of fractional calculus 1695–1900. Historia Mathematica 4, No 1 (1977), 75–89; http://dx.doi.org/10.1016/0315-0860(77)90039-8. http://dx.doi.org/10.1016/0315-0860(77)90039-8CrossrefGoogle Scholar

  • [10] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York, 1993. Google Scholar

  • [11] S. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de l’ordre de dérivation. PhD thesis, Université Paris Nord, 1994. Google Scholar

  • [12] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego, 1999. Google Scholar

  • [13] L. Debnath, A brief historical introduction to fractional calculus. Internat. J. of Mathematical Education in Science and Technology 35, No 4 (2004), 487–501. http://dx.doi.org/10.1080/00207390410001686571CrossrefGoogle Scholar

  • [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006. Google Scholar

  • [15] D. Cafagna, Fractional calculus: A mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine 1, No 2 (2007), 35–40. http://dx.doi.org/10.1109/MIE.2007.901479CrossrefGoogle Scholar

  • [16] P. Williams, Fractional Calculus of Schwartz Distributions. Master’s Thesis, University of Melbourne, 2007. Google Scholar

  • [17] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press & World Sci., London — Singapore, 2010. http://dx.doi.org/10.1142/9781848163300CrossrefGoogle Scholar

  • [18] Wikipedia, http://en.wikipedia.org/wiki/Niels Henrik Abel, Accessed Jan. 2013. Google Scholar

  • [19] N. H. Abel, Solutions de quelques problèmes à l’aide d’intégrales définies. In: OEuvres complètes de Niels Henrik Abel, Vol. 1. Cambridge University Press, 2012; Paper originally published in 1823. Google Scholar

  • [20] D. Valério and J. Sá da Costa, An Introduction to Fractional Control. IET, Stevenage, 2013; ISBN 978-1-84919-545-4. Google Scholar

  • [21] D. E. Goldman, Kenneth S. Cole 1900–1984. Biophysical Journal 47, No 6 (1985), 859–860. http://dx.doi.org/10.1016/S0006-3495(85)83991-6CrossrefGoogle Scholar

  • [22] A. Huxley, Kenneth Stewart Cole, 1900–1984, A Biographical Memoir. National Academies Press, Washington, 1996. Google Scholar

  • [23] Wikipedia, http://en.wikipedia.org/wiki/Kenneth Stewart Cole, Accessed Jan. 2013. Google Scholar

  • [24] K. S. Cole and R. H. Cole, Electric impedance of asterias eggs. The Journal of General Physiology 19, No 4 (1936), 609–623. http://dx.doi.org/10.1085/jgp.19.4.609CrossrefGoogle Scholar

  • [25] K. S. Cole and R. H. Cole, Electric impedance of arbacia eggs. The Journal of General Physiology 19, No 4 (1936), 625–632. http://dx.doi.org/10.1085/jgp.19.4.625CrossrefGoogle Scholar

  • [26] K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics — I: Alternating current characteristics. Journal of Chemical Physics 9 (1941), 341–352. http://dx.doi.org/10.1063/1.1750906CrossrefGoogle Scholar

  • [27] K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics — II: Direct current characteristics. Journal of Chemical Physics 10 (1942), 98–105. http://dx.doi.org/10.1063/1.1723677CrossrefGoogle Scholar

  • [28] B. Gross, Zum Verlauf des Einsatzstromes im anomalen Dielektrikum. Zeitschrift für Physik 108, No 9–10 (1938), 508–608. Google Scholar

  • [29] B. Gross, On the theory of dielectric loss. Physical Review 59, No 9 (1941), 748–750. http://dx.doi.org/10.1103/PhysRev.59.748CrossrefGoogle Scholar

  • [30] H. T. Davis, The Theory of Linear Operators. Principia Press, Bloomington, 1936. Google Scholar

  • [31] P. Debye, Polar Molecules. Chemical Catalog, New York, 1929. Google Scholar

  • [32] S. Havriliak and S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, No 4 (1967), 161–210. CrossrefGoogle Scholar

  • [33] R. L. Magin, Fractional Calculus in Bioengineering. Begell House, 2004. Google Scholar

  • [34] E. Capelas de Oliveira, F. Mainardi, and J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. The European Physical Journal 193, No 1 (2011), 161–171; Revised version, at http://arxiv.org/abs/1106.1761. Google Scholar

  • [35] E. F. Greene and G. J. Berberian, Symposium on dielectric phenomena in honor of the 70th birthday of Professor Robert H. Cole. IEEE Transactions on Electrical Insulation 20, No 6 (1985), 897. Google Scholar

  • [36] F. I. Mopsik and J. D. Hoffman, In honor of professor Robert H. Cole’s seventieth birthday. IEEE Transactions on Electrical Insulation 20, No 6 (1985), 899–924. Google Scholar

  • [37] Weblink, http://dla.whoi.edu/manuscripts/node/168058. Google Scholar

  • [38] Wikipedia, http://en.wikipedia.org/wiki/Andrew Gemant, Accessed Jan. 2013. Google Scholar

  • [39] A. Gemant, The conception of a complex viscosity and its application to dielectrics. Transactions of the Faraday Society 31 (1935), 1582–1590. http://dx.doi.org/10.1039/tf9353101582CrossrefGoogle Scholar

  • [40] A. Gemant, Frictional Phenomena. Chemical Publishing Company, Brooklin, 1950. Google Scholar

  • [41] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fractional Calculus and Applied Analysis 15, No 4 (2012), 712–717; DOI: 10.2478/s13540-012-0048-6; http://link.springer.com/article/10.2478/s13540-012-0048-6. http://dx.doi.org/10.2478/s13540-012-0048-6CrossrefGoogle Scholar

  • [42] Yu. A. Rossikhin, Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Applied Mechanics Reviews 63, No 1 (2010), # 010701. CrossrefGoogle Scholar

  • [43] G. W. Scott-Blair, The role of psychophysics in rheology. Journal of Colloid Science 2, No 1 (1947), 21–32. http://dx.doi.org/10.1016/0095-8522(47)90007-XCrossrefGoogle Scholar

  • [44] Weblink, http://www.aip.org/aip/awards/gemawd.html. Google Scholar

  • [45] A. Gerasimov, A generalization of linear laws of deformation and its applications to problems pf internal friction. Prikladnaia Matematika i Mekhanica (J. of Appl. Mathematics and Mechanics) 12, No 3 (1948), 251–260. Google Scholar

  • [46] R. Garra and F. Polito, Fractional calculus modelling for insteady unidirectional flow of incomplete fluids with time-dependent viscosity. Commun. in Nonlinear Sci. and Numer. Simulation 17, No 2 (2012), 5073–5078. http://dx.doi.org/10.1016/j.cnsns.2012.04.024CrossrefGoogle Scholar

  • [47] A. A. Kilbas, Theory and Applications of Differential Equations of Fractional Order, A Course of Lectures. In: Methodology School-Conference “Math. Physics and Nanotechnology” Dedicated to 40th Jibilee of Samara State University (Samara, 4–9 Oct. 2009), 121 pp; in Russian; http://www.314159.ru/de/kilbas1.pdf. Google Scholar

  • [48] V. V. Uchaikin, Method of Fractional Derivatives. Artishok, Ul’yanovsk, 2008 (In Russian). Google Scholar

  • [49] Wikipedia, http://en.wikipedia.org/wiki/Oliver Heaviside, Accessed Jan. 2013. Google Scholar

  • [50] Weblink, http://www.theiet.org/resources/library/archives/biographies/heaviside.cfm. Google Scholar

  • [51] F. Gill, Oliver Heaviside. The Bell System Technical Journal 4, No 3 (1925), 349–354. http://dx.doi.org/10.1002/j.1538-7305.1925.tb00469.xCrossrefGoogle Scholar

  • [52] P. Lévy, Oliver Heaviside. Bulletin des Sciences Mathématiques 2, No 50 (1926), 174–192. Google Scholar

  • [53] R. Appleyard, Pioneers of electrical communication VIII: Oliver Heaviside. Electrical Communication 7, No 2 (1928), 71–93. Google Scholar

  • [54] G. Lee, Oliver Heaviside. British Council, London, 1947. Google Scholar

  • [55] H. Josephs, History under the floorboards: An account of the recent discovery of some Heaviside papers. Journal of the Institution of Electrical Engineers 5, No 49 (1959), 26–30. Google Scholar

  • [56] H. Josephs, The Heaviside papers found at Paignton in 1957. Proc. of the IEE — Part C: Monographs, 106, No 9 (1959), 70–76. Google Scholar

  • [57] D. A. Edge, Oliver Heaviside (1850–1927) — physical mathematician. Teaching Mathematics Applications 2, No 2 (1983), 55–61. http://dx.doi.org/10.1093/teamat/2.2.55CrossrefGoogle Scholar

  • [58] Paul J. Nahin, Oliver Heaviside, fractional operators, and the age of the Earth. IEEE Transactions on Education E-28, No 2 (1985), 94–104. http://dx.doi.org/10.1109/TE.1985.4321749CrossrefGoogle Scholar

  • [59] Paul J. Nahin, Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. The Johns Hopkins University Press, Baltimore, 2002. Google Scholar

  • [60] B. Mahon, Oliver Heaviside: Maverick Mastermind of Electricity. IET, London, 2009. http://dx.doi.org/10.1049/PBHT036ECrossrefGoogle Scholar

  • [61] H. Komatsu, Heaviside’s theory of signal transmission on submarine cables. Banach Center Publications 88 (2010), 159–173. http://dx.doi.org/10.4064/bc88-0-13CrossrefGoogle Scholar

  • [62] H. Heaviside, Electromagnetic induction and its propagation. The Electrician I–II, 1885–1887. Google Scholar

  • [63] H. Heaviside, Electromagnetic waves, the propagation of potential, and the electromagnetic effects of a moving charge. The Electrician II, 1888–1889. Google Scholar

  • [64] H. Heaviside, On the electromagnetic effects due to the motion of electrification through a dielectric. Philosophical Magazine 5, No 27 (1889), 324–339. http://dx.doi.org/10.1080/14786448908628362CrossrefGoogle Scholar

  • [65] H. Heaviside, On the forces, stresses, and fluxes of energy in the electromagnetic field. Philosophical Transaction of the Royal Society 183A (1893), 423–480. Google Scholar

  • [66] H. Heaviside, A gravitational and electromagnetic analogy. The Electrician 31 (1893), 281–282. Google Scholar

  • [67] Weblink, http://www.annales.org/archives/x/paullevy.html Google Scholar

  • [68] J. J. O’Connor, E. F. Robertson, Paul Lévy (mathematician). http://www-history.mcs.st-andrews.ac.uk/Biographies/Levy Paul.html. Google Scholar

  • [69] M. Loève, Paul Lévy, 1886–1971. The Annals of Probability 1, No 1 (1973), 1–8. http://dx.doi.org/10.1214/aop/1176997021CrossrefGoogle Scholar

  • [70] P. Lévy, Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris, 1954. Google Scholar

  • [71] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 165–191. Google Scholar

  • [72] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports 339 (2000), 1–77. http://dx.doi.org/10.1016/S0370-1573(00)00070-3CrossrefGoogle Scholar

  • [73] Wikipedia, http://en.wikipedia.org/wiki/ Kazan State Technical University named after A. N. Tupolev. Google Scholar

  • [74] V. Kiryakova, Editorial: FCAA related new, events and books (FCAA — Volume 17-1-2014). Fractional Calculus and Applied Analysis 17, No 1 (2014); DOI: 10.2478/s13540-014-0151-y; http://link.springer.com/article/10.2478/s13540-014-0151-y. CrossrefGoogle Scholar

  • [75] R. Sh. Nigmatullin, V. A. Belavin, Electrolite fractional-differentiating and integrating two-pole network. Trudy (Trans.) of the Kazan Aviation Institute, Issue 82 (Radiotechn. and Electronics) (1964), 58–66; In Russian. Google Scholar

  • [76] V. A. Belavin, R. Sh. Nigmatullin, A. I. Miroshnikov, N. K. Lutskaya, Fractional differentiation of oscillographic polarograms by means of an electrochemical twoterminal network. Trudy (Trans.) of the Kazan Aviation Institute 5 (1964), 144–145; In Russian. Google Scholar

  • [77] Yu. K. Evdokimov, ‘R. Sh. Nigmatullin: Trajectory of scientific creativity’. In: Nelinejnyi Mir (Nonlinear World), No 3 (2008); In Russian; http://www.radiotec.ru/catalog.php?cat=jr11&art=5032. Google Scholar

  • [78] R. R. Nigmatullin, D. Baleanu, New relationships connecting a class of fractal objects and fractional integrals in space. Fractional Calculus and Applied Analysis 16, No 4 (2013), 911–936; DOI: 10.2478/s13540-013-0056-1; http://link.springer.com/article/10.2478/s13540-013-0056-1. http://dx.doi.org/10.2478/s13540-013-0056-1CrossrefGoogle Scholar

  • [79] G. A. Maugin, Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective. Springer, 2013. http://dx.doi.org/10.1007/978-94-007-6353-1CrossrefGoogle Scholar

  • [80] Website Mech.-Math. Fac. of Moscow State Univ., http://www.math.msu.su/rabotnov; see also http://www.detalmach.ru/Rabotnov.htm, and at http://ru.wikipedia.org/wiki, In Russian. Google Scholar

  • [81] Yu. N. Rabotnov, Equilibrium of an elastic medium with after-effect. Prikladnaya Mat. i Meh. (Appll. Math. and Mech.) 12, No 1 (1948), 53–62, In Russian. Google Scholar

  • [82] Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics. Mir Publishers, Moscow, 1980 (Revis. from the Russian Ed., Nauka, Moscow, 1977). Google Scholar

  • [83] Yu. A. Rossikhin and M. V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fractional Calculus and Applied Analysis 10, No 2 (2007), 111–122; http://www.math.bas.bf/~fcaa. Google Scholar

  • [84] Yu. A. Rossikhin and M. V. Shitikova, Two approaches for studying the impact response of viscoelastic engineering systems: An overview. Computers and Mathematics with Applications 66, No 5 (2013), 755–773. http://dx.doi.org/10.1016/j.camwa.2013.01.006CrossrefGoogle Scholar

  • [85] Yu. N. Rabotnov, Creep of Structure Materials. Nauka, Moscow, 1966 (Engl. transl. by North-Holland, Amsterdam, 1969). Google Scholar

  • [86] Yu. N. Rabotnov, L. H. Papernik, E. N. Zvonov, Tables of the Fractional-Exponential Function of Negative Parameters and of Integral of It. Moscow, Nauka, 1969 (in Russian). Google Scholar

  • [87] M. Reiner, George William Scott Blair — a personal note. Journal of Texture Studies 4, No 1 (1973), 4–9. http://dx.doi.org/10.1111/j.1745-4603.1973.tb00649.xCrossrefGoogle Scholar

  • [88] G. W. Scott-Blair, Analytical and integrative aspects of the stressstrain-time problem. Journal of Scientific Instruments 51, No 5 (1944), 80–84. http://dx.doi.org/10.1088/0950-7671/21/5/302CrossrefGoogle Scholar

  • [89] R. I. Tanner and K. Walters, Rheology: An Historical Perspective. Elsevier, 1998. Google Scholar

  • [90] P. Sherman, Obituary: George William Scott Blair (1902–1987). Rheologica Acta 27 (1988), 1–2. http://dx.doi.org/10.1007/BF01372443CrossrefGoogle Scholar

  • [91] G. W. Becker, Festvortrag “50 Jahre Deutsche Rheologische Gesellschaft”; http://www.drg.bam.de/drgdeutsch/03rheologentagung2001/festvortrag2001/festvortrag.pdf, 2001. Google Scholar

  • [92] S. Rogosin, F. Mainardi, George Scott Blair — the pioneer of fractional calculus in rheology. Communications in Applied and Industrial Math., Special issue, To appear 2014 (17 pp.); http://caim.simai.eu/index.php/caim. Google Scholar

About the article

Published Online: 2014-03-21

Published in Print: 2014-06-01


Citation Information: Fractional Calculus and Applied Analysis, Volume 17, Issue 2, Pages 552–578, ISSN (Online) 1314-2224, DOI: https://doi.org/10.2478/s13540-014-0185-1.

Export Citation

© 2014 Diogenes Co., Sofia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mirko D’Ovidio, Paola Loreti, Alireza Momenzadeh, and Sima Sarv Ahrab
Fractional Calculus and Applied Analysis, 2018, Volume 21, Number 4, Page 937
[2]
Vasily E. Tarasov and Svetlana S. Tarasova
Communications in Nonlinear Science and Numerical Simulation, 2018
[3]
Chong Li, Yingjie Yang, and Sifeng Liu
Communications in Nonlinear Science and Numerical Simulation, 2018
[4]
Aleksei Tepljakov, Baris Baykant Alagoz, Emmanuel Gonzalez, Eduard Petlenkov, and Celaleddin Yeroglu
Journal of Circuits, Systems and Computers, 2018, Page 1850176
[5]
Abdullah Ates, Baris Baykant Alagoz, and Celaleddin Yeroglu
Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2017, Volume 41, Number 2, Page 153
[6]
António M Lopes and JA Tenreiro Machado
Journal of Vibration and Control, 2016, Volume 22, Number 8, Page 2100
[7]
Yu A Rossikhin and MV Shitikova
Journal of Vibration and Control, 2016, Volume 22, Number 8, Page 2019
[9]
Emilia Bazhlekova and Ivan Bazhlekov
Computers & Mathematics with Applications, 2017, Volume 73, Number 6, Page 1363
[10]
M. Pakdaman, A. Ahmadian, S. Effati, S. Salahshour, and D. Baleanu
Applied Mathematics and Computation, 2017, Volume 293, Page 81
[12]
Roberto Garrappa
Communications in Nonlinear Science and Numerical Simulation, 2016, Volume 38, Page 178
[13]
José Gómez-Aguilar, Huitzilin Yépez-Martínez, Celia Calderón-Ramón, Irene Cruz-Orduña, Ricardo Escobar-Jiménez, and Victor Olivares-Peregrino
Entropy, 2015, Volume 17, Number 9, Page 6289
[14]
Salman Jahanshahi and Delfim F. M. Torres
Journal of Optimization Theory and Applications, 2017, Volume 174, Number 1, Page 156
[16]
Ivan I. Popov, Yury A. Rossikhin, Marina V. Shitikova, and Chang Ta-Peng
Mechanics of Time-Dependent Materials, 2015, Volume 19, Number 4, Page 455
[17]
A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, and R. Yunus
Journal of Computational Physics, 2015, Volume 294, Page 562

Comments (0)

Please log in or register to comment.
Log in