[1] A. Ahmadian, M. Suleiman, S. Salahshour, An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations. Abstr. Appl. Anal.
2013 (2013), Article ID 505903, 29 pages. Web of ScienceGoogle Scholar

[2] D. Baleanu, A.H. Bhrawy, T.M. Taha, Two efficient generalized Laguerre spectral algorithms for fractional initial value problems. Abstr. Appl. Anal.
2013 (2013); doi:10.1155/2013/546502. Web of ScienceCrossrefGoogle Scholar

[3] D. Baleanu, A.H. Bhrawy, T.M. Taha, A modified generalized Laguerre spectral methods for fractional differential equations on the half line. Abstr. Appl. Anal.
2013 (2013); doi:10.1155/2013/413529. CrossrefGoogle Scholar

[4] A.H. Bhrawy, M.M. Alghamdi, T.M. Taha, A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line. Adv. Differ. Equ.
2012 (2012), Article ID 179, 12 pages. CrossrefWeb of ScienceGoogle Scholar

[5] A.H. Bhrawy, D. Baleanu, L.M. Assas, Efficient generalized Laguerrespectral methods for solving multi-term fractional differential equations on the half line. J. Vib. Contr.
20 (2014), 973–985. http://dx.doi.org/10.1177/1077546313482959CrossrefGoogle Scholar

[6] A.H. Bhrawy, M.A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals. Boundary Value Problems
2012 (2012), Article ID 62, 13 pages. Google Scholar

[7] A.H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Appl. Math. Comput.
222 (2013), 255–246. http://dx.doi.org/10.1016/j.amc.2013.07.056Web of ScienceCrossrefGoogle Scholar

[8] A.H. Bhrawy, M.M. Al-Shomrani, A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ.
2012 (2012), Article ID 8, 19 pages. CrossrefWeb of ScienceGoogle Scholar

[9] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag, New York, 1989. Google Scholar

[10] M.D. Choudhury, S. Chandra, S. Nag, S. Das, S. Tarafdar, Forced spreading and rheology of starch gel: Viscoelastic modeling with fractional calculus. Colloid. Surface. A
407 (2012), 64–70. http://dx.doi.org/10.1016/j.colsurfa.2012.05.008Web of ScienceCrossrefGoogle Scholar

[11] J. Deng, Z. Deng, Existence of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Letters (2014); doi:10.1016/j.aml.2014.02.001. CrossrefGoogle Scholar

[12] K. Diethelm, N.J. Ford, Numerical solution of the Bagley-Torvik equation. BIT Numerical Mathematics
42, No 3 (2002), 490–507. Google Scholar

[13] E.H. Doha, A.H. Bhrawy, M.A. Abdelkawy, R.A. Van Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1 + 1 nonlinear Schrödinger equations. J. Comput. Phys.
261 (2014), 244–255. http://dx.doi.org/10.1016/j.jcp.2014.01.003CrossrefGoogle Scholar

[14] E.H. Doha, A.H. Bhrawy, An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method. Comput. Math. Appl.
64 (2012), 558–571. http://dx.doi.org/10.1016/j.camwa.2011.12.050Web of ScienceCrossrefGoogle Scholar

[15] E.H. Doha, A.H. Bhrawy, R.M. Hafez, On shifted Jacobi spectral method for high-order multi-point boundary value problems. Commun. in Nonlinear Sci. and Numer. Simulation
17 (2012), 3802–3810. http://dx.doi.org/10.1016/j.cnsns.2012.02.027CrossrefGoogle Scholar

[16] E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Modell.
36 (2012), 4931–4943. http://dx.doi.org/10.1016/j.apm.2011.12.031CrossrefGoogle Scholar

[17] F. Flandoli, C.A. Tudor, Brownian and fractional Brownian stochastic currents via Malliavin calculus. J. Funct. Anal.
258 (2010), 279–306. http://dx.doi.org/10.1016/j.jfa.2009.05.001CrossrefWeb of ScienceGoogle Scholar

[18] D. Funaro, Polynomial Approximations of Differential Equations. Springer-Verlag, 1992. Google Scholar

[19] F. Gao, X. Lee, H. Tong, F. Fei, and H. Zhao, Identification of unknown parameters and orders via cuckoo search oriented statistically by differential evolution for noncommensurate fractional-order chaotic systems. Abstract and Applied Analysis
2013 (2013), Article ID 382834, 19 pages. Web of ScienceGoogle Scholar

[20] A. Ghomashi, S. Salahshour, A. Hakimzadeh, Approximating solutions of fully fuzzy linear systems: A financial case study. Journal of Intelligent and Fuzzy Systems
26 (2014), 367–378. Google Scholar

[21] M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput.
234 (2014), 267–276. http://dx.doi.org/10.1016/j.amc.2014.02.047CrossrefGoogle Scholar

[22] M. Ishteva, L. Boyadjiev, On the C-Laguerre functions. C.R. Acad. Bulg. Sci.
58, No 9 (2005), 1019–1024. Google Scholar

[23] M. Ishteva, L. Boyadjiev, R. Scherer, On the Caputo operator of fractional calculus and C-Laguerre functions. Math. Sci. Res.
9, No 6 (2005), 161–170. Google Scholar

[24] Y.L. Jiang, X.L. Ding, Waveform relaxation methods for fractional differential equations with the Caputo derivatives. Comput. Math. Appl. 238 (2013), 51–67. Google Scholar

[25] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model.
37 (2013), 5498–5510. http://dx.doi.org/10.1016/j.apm.2012.10.026CrossrefGoogle Scholar

[26] F. Gao, X. Lee, F. Fei, H. Tong, Y. Deng, H. Zhao, Identification timedelayed fractional order chaos with functional extrema model via differential evolution. Expert Systems with Applications
41 (2014), 1601–1608. http://dx.doi.org/10.1016/j.eswa.2013.08.057CrossrefGoogle Scholar

[27] R.L. Magin, C. Ingo, L. Colon-Perez, W. Triplett, T.H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Micropor. Mesopor. Mat.
178 (2013), 39–43. http://dx.doi.org/10.1016/j.micromeso.2013.02.054Web of ScienceCrossrefGoogle Scholar

[28] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl.
59 (2010), 1326–1336. http://dx.doi.org/10.1016/j.camwa.2009.07.006CrossrefGoogle Scholar

[29] G. Szegö, Orthogonal Polynomials. Amer. Math. Soc. Colloq. Pub. 23, 1985. Google Scholar

[30] C. Yang, J. Hou, An approximate solution of nonlinear fractional differential equation by Laplace transform and Adomian polynomials. J. Inf. Comput. Sci.
10 (2013), 213–222. Google Scholar

[31] A.M. Yang, Y.Z. Zhang, C. Cattani, G.N. Xie, M.M. Rashidi, Y.J. Zhou, X.-J. Yang, Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstract and Applied Analysis
2014 (2014), Article ID 372741, 6 pages. Web of ScienceGoogle Scholar

[32] F. Yin, J. Song, Y. Wu, L. Zhang, Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstr. Appl. Anal.
2013 (2013), Article ID 562140, 13 pages. Google Scholar

[33] F. Yin, J. Song, H. Leng, F. Lu, Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations. The Scientific World Journal
2014 (2014), Article ID 928765, 9 pages. Google Scholar

[34] Y. Zhao, D. Baleanu, C. Cattani, D.F. Cheng, X.-J. Yang, Maxwell’s equations on Cantor sets: A local fractional approach. Advances in High Energy Physics
2013 (2013), Article ID 686371, 6 pages. Google Scholar

[35] Y. Zhao, D.F. Cheng, X.-J. Yang, Approximation solutions for local fractional Schrodinger equation in the one-dimensional Cantorian system. Advances in Mathematical Physics
2013 (2013), Article ID 291386, 5 pages. Google Scholar

## Comments (0)