[1] T. Bakkyaraj, R. Sahadevan, An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. *J. Fract. Calc. Appl*. **5**, No 1 (2014), 37-52.Google Scholar

[2] T. Bakkyaraj, R. Sahadevan, On solutions of two coupled fractional time derivative Hirota equations. *Nonlinear Dyn*. **77** (2014), 1309-1322.Google Scholar

[3] G. W. Bluman and S. C. Anco, *Symmetry and Integration Methods for Differential Equations*. Springer-Verlag, New York (2002).Google Scholar

[4] E. Buckwar, Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. *J. Math. Anal. Appl*. **227** (1998), 81-97.Google Scholar

[5] E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Fractional models of anomalous relaxation based on the Kilbas and Saigo function. *Meccanica* **49** (2014), 2049-2060.CrossrefWeb of ScienceGoogle Scholar

[6] V. D. Djordjevic, T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations. *J. Comput. Appl. Math*. **212** (2008), 701-714.Google Scholar

[7] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Time fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions. *Astrophys. Space Sci*. **333** (2011), 269-276.Web of ScienceGoogle Scholar

[8] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Time fractional KdV equation for plasma of two different temperature electrons and stationary ion. *Phys. Plasmas* **18** (2011), 092116.Web of ScienceCrossrefGoogle Scholar

[9] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Ionacoustic waves in unmagnetized collisionless weakly relativistic plasma of warm ion and isothermal electron using time fractional KdV equation. *Advances in Space Research* **49**, No 12 (2012), 1721-1727.Web of ScienceGoogle Scholar

[10] V. A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. *Proc. Roy. Soc. Endin. Sect. A* **125** (1995), 225-246.Google Scholar

[11] V. A. Galaktionov, S. R. Svirshchevskii, *Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics*. Chapman and Hall/CRC, London (2007).Google Scholar

[12] R. K. Gazizov, A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by the invariant subspace method. *Comput. Math. Appl*. **66** (2013), 576-584.Google Scholar

[13] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Symmetry properties of fractional diffusion equations. *Phys. Scr*. **T136** (2009), 014016.Google Scholar

[14] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Group invariant solutions of fractional differential equations, In: *Nonlinear Science and Complexity*, J. A.T. Machado, A. C.J. Luo, R. S. Barbosa, M. F. Silva, L. B. Figueiredo (Eds.), Springer (2011), 51-58.Google Scholar

[15] P. Artale Harris, R. Garra, Analytic solution of nonlinear fractional Burgers type equation by invariant subspace method. *Nonlinear Stud*. **20**, No 4 (2013), 471-481.Google Scholar

[16] R. Hilfer, *Applications of Fractional Calculus in Physics*. World Scientific, Singapore (2000).Google Scholar

[17] M. Kac, P. van Moerbeke, On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. *Advances in Math*. **16** (1975), 160-169.Google Scholar

[18] A. A. Kilbas, M. Saigo, On solution of integral equation of Abel-Volterra type. *Diff. Int. Eqs*. **8**, No 5 (1995), 993-1011.Google Scholar

[19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, *Theory and Applications of Fractional Differential Equations. Elsevier*, The Netherlands (2006).Google Scholar

[20] A. A. Kilbas, M. Rivero, L. Rodrguez-Germa J. J. Trujillo, Analytic solutions of some linear fractional differential equations with variable coefficients. *Appl. Math. Comput*. **187** (2007), 239.249.Google Scholar

[21] R. A. Leo, G. Sicuro, P. Tempesta, A general theory of Lie symmetries for fractional differential equations. http://arxiv.org/pdf/1405.1017.pdf (2014).Google Scholar

[22] W. X. Ma, A refined invariant subspace method and applications to evolution equations. *Sci. China Math*. **55**, No 9 (2012), 1769.1778.Google Scholar

[23] K. S. Miller, B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*. Wiley, New York (1993).Google Scholar

[24] I. Podlubny, *Fractional Differential Equations*. Academic Press, San Diego CA (1999).Google Scholar

[25] R. Sahadevan, T. Bakkyaraj, Invariant analysis of time fractional generalised Burgers and Korteweg-de Vries equations. *J. Math. Anal. Appl*. **393** (2012), 341.347.Web of ScienceGoogle Scholar

[26] S. Samko, A. Kilbas, O. Marichev, *Fractional Integrals and Derivatives: Theory and Applications*. Gordon and Breach Science, Switzerland (1993).Google Scholar

[27] S. R. Svirshchevskii, Lie-Backlund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. *Phys. Lett. A* **199** (1995), 344.348.Google Scholar

[28] S. R. Svirshchevskii, Invariant linear spaces and exact solutions of nonlinear evolution equations. *J. Nonlinear Math. Phys*. **3**, No 1-2 (1996), 164.169.Google Scholar

[29] S. S. Titov, A method of finite-dimensional rings for solving nonlinear equations of mathematical physics. In: *Aero Dynamics*, T. P. Ivanova (Ed.), Saratov University, Saratov (1988), 104.109.Google Scholar

[30] M. Toda, *Theory of Nonlinear Lattices*. Springer Verlag, Berlin (1981).Google Scholar

[31] J. Weiss, M. Tabor, G. Carnevale, The Painleve property for partial differential equations. *J. Math. Phys*. **24** (1983), 522.526.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.