Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

See all formats and pricing
More options …
Volume 18, Issue 1


Invariant Subspace Method and Exact Solutions of Certain Nonlinear Time Fractional Partial Differential Equations

Ramajayam Sahadevan / Thangarasu Bakkyaraj
Published Online: 2015-02-10 | DOI: https://doi.org/10.1515/fca-2015-0010


We show, using invariant subspace method, how to derive exact solutions to the time fractional Korteweg-de Vries (KdV) equation, potential KdV equation with absorption term, KdV-Burgers equation and a time fractional partial differential equation with quadratic nonlinearity. Also we extend the invariant subspace method to nonlinear time fractional differential-difference equations and derive exact solutions of the time fractional discrete KdV and Toda lattice equations.

MSC 2010: Primary 26A33; Secondary 33E12; 34A08; 34K37; 35R11

Key Words and Phrases: invariant subspace method; Mittag-Leffler function; Kilbas-Saigo function; α-analytic function; α-ordinary point; regular α-singular point


  • [1] T. Bakkyaraj, R. Sahadevan, An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. J. Fract. Calc. Appl. 5, No 1 (2014), 37-52.Google Scholar

  • [2] T. Bakkyaraj, R. Sahadevan, On solutions of two coupled fractional time derivative Hirota equations. Nonlinear Dyn. 77 (2014), 1309-1322.Google Scholar

  • [3] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations. Springer-Verlag, New York (2002).Google Scholar

  • [4] E. Buckwar, Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227 (1998), 81-97.Google Scholar

  • [5] E. Capelas de Oliveira, F. Mainardi, J. Vaz Jr., Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49 (2014), 2049-2060.CrossrefWeb of ScienceGoogle Scholar

  • [6] V. D. Djordjevic, T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations. J. Comput. Appl. Math. 212 (2008), 701-714.Google Scholar

  • [7] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Time fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions. Astrophys. Space Sci. 333 (2011), 269-276.Web of ScienceGoogle Scholar

  • [8] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Time fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 18 (2011), 092116.Web of ScienceCrossrefGoogle Scholar

  • [9] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Ionacoustic waves in unmagnetized collisionless weakly relativistic plasma of warm ion and isothermal electron using time fractional KdV equation. Advances in Space Research 49, No 12 (2012), 1721-1727.Web of ScienceGoogle Scholar

  • [10] V. A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. Roy. Soc. Endin. Sect. A 125 (1995), 225-246.Google Scholar

  • [11] V. A. Galaktionov, S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, London (2007).Google Scholar

  • [12] R. K. Gazizov, A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66 (2013), 576-584.Google Scholar

  • [13] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Symmetry properties of fractional diffusion equations. Phys. Scr. T136 (2009), 014016.Google Scholar

  • [14] R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, Group invariant solutions of fractional differential equations, In: Nonlinear Science and Complexity, J. A.T. Machado, A. C.J. Luo, R. S. Barbosa, M. F. Silva, L. B. Figueiredo (Eds.), Springer (2011), 51-58.Google Scholar

  • [15] P. Artale Harris, R. Garra, Analytic solution of nonlinear fractional Burgers type equation by invariant subspace method. Nonlinear Stud. 20, No 4 (2013), 471-481.Google Scholar

  • [16] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).Google Scholar

  • [17] M. Kac, P. van Moerbeke, On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Advances in Math. 16 (1975), 160-169.Google Scholar

  • [18] A. A. Kilbas, M. Saigo, On solution of integral equation of Abel-Volterra type. Diff. Int. Eqs. 8, No 5 (1995), 993-1011.Google Scholar

  • [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006).Google Scholar

  • [20] A. A. Kilbas, M. Rivero, L. Rodrguez-Germa J. J. Trujillo, Analytic solutions of some linear fractional differential equations with variable coefficients. Appl. Math. Comput. 187 (2007), 239.249.Google Scholar

  • [21] R. A. Leo, G. Sicuro, P. Tempesta, A general theory of Lie symmetries for fractional differential equations. http://arxiv.org/pdf/1405.1017.pdf (2014).Google Scholar

  • [22] W. X. Ma, A refined invariant subspace method and applications to evolution equations. Sci. China Math. 55, No 9 (2012), 1769.1778.Google Scholar

  • [23] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).Google Scholar

  • [24] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego CA (1999).Google Scholar

  • [25] R. Sahadevan, T. Bakkyaraj, Invariant analysis of time fractional generalised Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 393 (2012), 341.347.Web of ScienceGoogle Scholar

  • [26] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Switzerland (1993).Google Scholar

  • [27] S. R. Svirshchevskii, Lie-Backlund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. Phys. Lett. A 199 (1995), 344.348.Google Scholar

  • [28] S. R. Svirshchevskii, Invariant linear spaces and exact solutions of nonlinear evolution equations. J. Nonlinear Math. Phys. 3, No 1-2 (1996), 164.169.Google Scholar

  • [29] S. S. Titov, A method of finite-dimensional rings for solving nonlinear equations of mathematical physics. In: Aero Dynamics, T. P. Ivanova (Ed.), Saratov University, Saratov (1988), 104.109.Google Scholar

  • [30] M. Toda, Theory of Nonlinear Lattices. Springer Verlag, Berlin (1981).Google Scholar

  • [31] J. Weiss, M. Tabor, G. Carnevale, The Painleve property for partial differential equations. J. Math. Phys. 24 (1983), 522.526.CrossrefGoogle Scholar

About the article

Received: 2014-05-06

Published Online: 2015-02-10

Citation Information: Fractional Calculus and Applied Analysis, Volume 18, Issue 1, Pages 146–162, ISSN (Online) 1314-2224, DOI: https://doi.org/10.1515/fca-2015-0010.

Export Citation

© 2015 Diogenes Co., Sofia.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jian-Gen Liu, Xiao-Jun Yang, and Yi-Ying Feng
Modern Physics Letters B, 2019, Page 2050009
Rajesh Kumar Gupta and Jaskiran Kaur
The European Physical Journal Plus, 2019, Volume 134, Number 6
P. Prakash
The European Physical Journal Plus, 2019, Volume 134, Number 6
Sangita Choudhary, P. Prakash, and Varsha Daftardar-Gejji
Computational and Applied Mathematics, 2019, Volume 38, Number 3
Yinghui He and Yunmei Zhao
Mathematical Problems in Engineering, 2018, Volume 2018, Page 1
Jun Jiang, Yuqiang Feng, and Shougui Li
Axioms, 2018, Volume 7, Number 1, Page 10
Pietro Artale Harris and Roberto Garra
Journal of Mathematical Physics, 2017, Volume 58, Number 6, Page 063501
Weiguo Rui
Communications in Nonlinear Science and Numerical Simulation, 2017, Volume 47, Page 253
Komal Singla and R. K. Gupta
Journal of Mathematical Physics, 2016, Volume 57, Number 10, Page 101504
Manoj Gaur and K. Singh
International Journal of Differential Equations, 2016, Volume 2016, Page 1
R. Sahadevan and P. Prakash
Communications in Nonlinear Science and Numerical Simulation, 2017, Volume 42, Page 158
R. Sahadevan and P. Prakash
Nonlinear Dynamics, 2016, Volume 85, Number 1, Page 659
T. Bakkyaraj and R. Sahadevan
International Journal of Applied and Computational Mathematics, 2016, Volume 2, Number 1, Page 113

Comments (0)

Please log in or register to comment.
Log in