[1] S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012 (2012), 19 pages; doi:10.1186/1687-1847-2012-62.CrossrefGoogle Scholar
[2] S. Abbas and M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative. Stud. Univ. Babe.s-Bolyai Math, 57, No 4 (2012), 469-479.Google Scholar
[3] S. Abbas and M. Benchohra, Ulam-Hyers stability for the Darboux problem for partial fractional differential and integro-differential equations via Picard operators. Results. Math. 65, No 1-2 (2014), 67-79.Google Scholar
[4] S. Abbas, M. Benchohra and and A. Cabada, Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. Vol. 2012 (2012), Article No 128, 15 pp.Google Scholar
[5] S. Abbas, M. Benchohra and G. M. N'Gu'er'ekata, Topics in Fractional Differential Equations. Developments in Mathematics, 27, Springer, New York (2012).Google Scholar
[6] S. Abbas, M. Benchohra and G. M. N'Gu'er'ekata, Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2014).Google Scholar
[7] S. Abbas, M. Benchohra and S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators. Nonlinear Stud. 20, No 4 (2013), 623-641.Google Scholar
[8] S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations. Frac. Calc. Appl. Anal. 15, No 2 (2012), 168-182; DOI: 10.2478/s13540-012-0012-5; http://link.springer.com/article/10.2478/s13540-012-0012-5.CrossrefGoogle Scholar
[9] S. Abbas, M. Benchohra and Y. Zhou, Darboux problem for fractional order neutral functional partial hyperbolic differential equations. Int. J. Dyn. Syst. Differ. Equ. 2 (2009), 301-312.Google Scholar
[10] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York (1977).Google Scholar
[11] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5-11.Google Scholar
[12] M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument. Bull. Korean Math. Soc. 48, No 3 (2011), 539-553.Web of ScienceCrossrefGoogle Scholar
[13] M. A. Darwish and J. Henderson, Nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes type. Rocky Mountain J. Math. 42, No 2 (2012), 545-566.Google Scholar
[14] M. A. Darwish and J. Bana's, Existence and characterization of solutions of nonlinear Volterra-Stieltjes integral equations in two vriables. Abstr. Appl. Anal. 2014 (2014), Article ID 618434, 11 pages.Google Scholar
[15] K. Deimling, Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992).Google Scholar
[16] K. Diethelm and N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229-248.Google Scholar
[17] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1999).Google Scholar
[18] D. Henry, Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin-New York (1989).Google Scholar
[19] E. Hern'andez, D. O'Regan, On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141 (2013), 1641-1649.Google Scholar
[20] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84-89.Google Scholar
[21] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.Google Scholar
[22] A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.Google Scholar
[23] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.Google Scholar
[24] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous. Appl. Math. Comput. 219 (2013), 6743-6749.Google Scholar
[25] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), 103-107.Google Scholar
[26] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, No 3 (2004), 318-325.CrossrefWeb of ScienceGoogle Scholar
[27] J. Wang, Y. Zhou and M. Feickan, Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, No 10 (2012), 3389-3405.CrossrefGoogle Scholar
[28] J. Wang, M. Feickan and Y. Zhou, Ulam's type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395 (2012), 258-264.Google Scholar
Comments (0)