Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 18, Issue 1

Issues

New Stability Results for Partial Fractional Differential Inclusions with Not Instantaneous Impulses

Saïd Abbas / Mouffak Benchohra
  • Laboratoire de Mathématiques, Université de Sidi Bel-Abbés B. P. 89, 22000, Sidi Bel-Abbés, ALGERIA
  • Department of Mathematics, Faculty of Science King Abdulaziz University P. O. Box 80203, Jeddah 21589, SAUDI ARABIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Abdalla Darwish
  • Department of Mathematics, Sciences Faculty for Girls King Abdulaziz University, Jeddah, SAUDI ARABIA
  • Department of Mathematics, Faculty of Science Damanhour University, Damanhour, EGYPT
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-10 | DOI: https://doi.org/10.1515/fca-2015-0012

Abstract

In this work, we discuss the existence and Ulam's type stability concepts for a class of partial functional differential inclusions with not instantaneous impulses and a nonconvex valued right hand side in Banach spaces. An example is also provided to illustrate our results.

MSC 2010: 26A33; 34A37; 34D10

Key Words and Phrases: fractional differential inclusion; left-sided mixed Riemann-Liouville integral; Caputo fractional order derivative; Darboux problem; fixed point; not instantaneous impulses; Ulam-Hyers-Rassias stability

References

  • [1] S. Abbas, D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012 (2012), 19 pages; doi:10.1186/1687-1847-2012-62.CrossrefGoogle Scholar

  • [2] S. Abbas and M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative. Stud. Univ. Babe.s-Bolyai Math, 57, No 4 (2012), 469-479.Google Scholar

  • [3] S. Abbas and M. Benchohra, Ulam-Hyers stability for the Darboux problem for partial fractional differential and integro-differential equations via Picard operators. Results. Math. 65, No 1-2 (2014), 67-79.Google Scholar

  • [4] S. Abbas, M. Benchohra and and A. Cabada, Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. Vol. 2012 (2012), Article No 128, 15 pp.Google Scholar

  • [5] S. Abbas, M. Benchohra and G. M. N'Gu'er'ekata, Topics in Fractional Differential Equations. Developments in Mathematics, 27, Springer, New York (2012).Google Scholar

  • [6] S. Abbas, M. Benchohra and G. M. N'Gu'er'ekata, Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2014).Google Scholar

  • [7] S. Abbas, M. Benchohra and S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators. Nonlinear Stud. 20, No 4 (2013), 623-641.Google Scholar

  • [8] S. Abbas, M. Benchohra and A. N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations. Frac. Calc. Appl. Anal. 15, No 2 (2012), 168-182; DOI: 10.2478/s13540-012-0012-5; http://link.springer.com/article/10.2478/s13540-012-0012-5.CrossrefGoogle Scholar

  • [9] S. Abbas, M. Benchohra and Y. Zhou, Darboux problem for fractional order neutral functional partial hyperbolic differential equations. Int. J. Dyn. Syst. Differ. Equ. 2 (2009), 301-312.Google Scholar

  • [10] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York (1977).Google Scholar

  • [11] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5-11.Google Scholar

  • [12] M. A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument. Bull. Korean Math. Soc. 48, No 3 (2011), 539-553.Web of ScienceCrossrefGoogle Scholar

  • [13] M. A. Darwish and J. Henderson, Nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes type. Rocky Mountain J. Math. 42, No 2 (2012), 545-566.Google Scholar

  • [14] M. A. Darwish and J. Bana's, Existence and characterization of solutions of nonlinear Volterra-Stieltjes integral equations in two vriables. Abstr. Appl. Anal. 2014 (2014), Article ID 618434, 11 pages.Google Scholar

  • [15] K. Deimling, Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992).Google Scholar

  • [16] K. Diethelm and N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229-248.Google Scholar

  • [17] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (1999).Google Scholar

  • [18] D. Henry, Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin-New York (1989).Google Scholar

  • [19] E. Hern'andez, D. O'Regan, On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141 (2013), 1641-1649.Google Scholar

  • [20] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84-89.Google Scholar

  • [21] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.Google Scholar

  • [22] A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.Google Scholar

  • [23] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.Google Scholar

  • [24] M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous. Appl. Math. Comput. 219 (2013), 6743-6749.Google Scholar

  • [25] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), 103-107.Google Scholar

  • [26] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, No 3 (2004), 318-325.CrossrefWeb of ScienceGoogle Scholar

  • [27] J. Wang, Y. Zhou and M. Feickan, Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, No 10 (2012), 3389-3405.CrossrefGoogle Scholar

  • [28] J. Wang, M. Feickan and Y. Zhou, Ulam's type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395 (2012), 258-264.Google Scholar

About the article

Received: 2014-06-12

Published Online: 2015-02-10


Citation Information: Fractional Calculus and Applied Analysis, Volume 18, Issue 1, Pages 172–191, ISSN (Online) 1314-2224, DOI: https://doi.org/10.1515/fca-2015-0012.

Export Citation

© 2015 Diogenes Co., Sofia.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kui Liu, Michal Fečkan, D. O’Regan, and JinRong Wang
Mathematics, 2019, Volume 7, Number 4, Page 333
[2]
Kui Liu, JinRong Wang, and Donal O’Regan
Advances in Difference Equations, 2019, Volume 2019, Number 1
[3]
Bashir Ahmad, Sotiris K. Ntouyas, Yong Zhou, and Ahmed Alsaedi
Bulletin of the Iranian Mathematical Society, 2018
[4]
Zagharide Zine El Abidine
Mediterranean Journal of Mathematics, 2017, Volume 14, Number 3
[5]
Dan Yang and JinRong Wang
Stochastic Analysis and Applications, 2017, Volume 35, Number 4, Page 719
[6]
Mikhail Kamenskii, Valeri Obukhovskii, Garik Petrosyan, and Jen-Chih Yao
Applicable Analysis, 2017, Page 1
[7]
Faten Toumi and Zagharide Zine El Abidine
Mediterranean Journal of Mathematics, 2016, Volume 13, Number 5, Page 2353

Comments (0)

Please log in or register to comment.
Log in